Synthetic biology in the engineering of metabolic pathways of microorganisms to obtain compounds of interest for the food industry
Main Article Content
Abstract
The engineering of metabolic pathways through synthetic biology has become an important tool for the food industry because it seeks the optimization of processes and production of compounds of interest. It is possible to produce compounds that are highly coveted, such as enzymes that take part in fermentation processes, or synthesis of products of high demand, or flavoring produced naturally by a microorganism. This can be achieved through genetic edition developed by synthetic biology through the assembly of genetic constructs CRISPR and synthetic mRNA. These techniques are used to increase the productivity of an organism that on its own produces a compound of interest, or to genetically modify a microorganism so that it can perform the synthesis of a product. However, it is necessary to take into account that not all microorganisms have the genetic tools necessary for the required post-translational modifications to activate enzyme or protein functions, and that the insertion of de novo pathways may result in both toxic compounds and intermediates for the chosen host. Particularly, it is common, when working in the food industry, to choose host microorganisms safe to be consumed by human beings, like GRAS organisms such as lactic acid bacteria and, more recently, yeasts of the Saccharomyces genus.
Article Details
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
Los autores conservan los derechos de autor y ceden a la revista el derecho de la primera publicación y pueda editarlo, reproducirlo, distribuirlo, exhibirlo y comunicarlo en el país y en el extranjero mediante medios impresos y electrónicos. Asimismo, asumen el compromiso sobre cualquier litigio o reclamación relacionada con derechos de propiedad intelectual, exonerando de responsabilidad a la Editorial Tecnológica de Costa Rica. Además, se establece que los autores pueden realizar otros acuerdos contractuales independientes y adicionales para la distribución no exclusiva de la versión del artículo publicado en esta revista (p. ej., incluirlo en un repositorio institucional o publicarlo en un libro) siempre que indiquen claramente que el trabajo se publicó por primera vez en esta revista.
References
M. Parzanese, “Tecnologías para la industria alimentaria” Ultrasonidos, ficha, 19, 1-9, 2016.
D. Jullesson, F. David, B. Pfleger, & J. Nielsen, “Impact of synthetic biology and metabolic engineering on industrial production of fine chemicals”, Biotechnology advances, 33(7), 1395-1402, 2015..
M. Arevalo-Villena, A. Briones-Perez, M. R. Corbo, M. Sinigaglia & A. Bevilacqua, “Biotechnological application of yeasts in food science: Starter cultures, probiotics and enzyme production,” Journal of Applied Microbiology, 123(6), 1360–1372, 2017. doi:10.1111/jam.13548
J. Becker & C. Wittmann, “Advanced biotechnology: Metabolically engineered cells for the bio‐based production of chemicals and fuels, materials, and health‐care products,” Angewandte Chemie International Edition, 54(11), 3328-3350, 2015.
S. A. Benner & A. M. Sismour, “Synthetic biology,” Nature Reviews Genetics, 6(7), 533–543, 2005. doi:10.1038/nrg1637
A. S. Khalil & J. J. Collins, “Synthetic biology: Applications come of age,” Nature Reviews Genetics, 11(5), 367, 2010. doi:10.1038/nrg2775
J. D. Keasling, “Manufacturing molecules through metabolic engineering. science”, Sicence, 330(6009), 1355–1358, 2010. doi:10.1126/science.1193990
M. J. Smanski, H. Zhou, J. Claesen, B. Shen, M. A. Fischbach, & C. A. Voigt, “Synthetic biology to access and expand nature’s chemical diversity,” Nature Reviews Microbiology, 14(3), 135, 2016.
Y. Guo, J. Dong, T. Zhou, J. Auxillos, T. Li, W. Zhang, ..., & J. Lin, “YeastFab: The design and construction of standard biological parts for metabolic engineering in Saccharomyces cerevisiae,” Nucleic Acids Research, 43(13), e88-e88, 2015.
J. A. Jones, V. R. Vernacchio, D. M. Lachance, M. Lebovich, L. Fu, A. N. Shirke,..., & M. A. Koffas, “ePathOptimize: A combinatorial approach for transcriptional balancing of metabolic pathways,” Scientific Reports, 5, 11301, 2015.
P. Calero & P. I. Nikel, “Chasing bacterial chassis for metabolic engineering: A perspective review from classical to non-traditional microorganisms,” Microbial Biotechnology, 2018. doi:10.1111/1751-7915.13292
J. Nielsen & J. D. Keasling, “Engineering cellular metabolism,” Cell, 164(6), 1185–1197, 2016. doi:10.1016/j.cell.2016.02.004
R. P. Shetty, D. Endy, , & T. F. Knight, “Engineering BioBrick vectors from BioBrick parts,” Journal of Biological Engineering, 2(1), 5, 2008. doi:10.1186/1754-1611-2-5
D. E. Cameron, C. J. Bashor, & J. J. Collins, “A brief history of synthetic biology,” Nature Reviews Microbiology, 12(5), 381–390, 2014. doi:10.1038/nrmicro3239
E. Pennisi, “Synthetic genome brings new life to bacterium,” Science, 328(5981), 958–959, 2010. doi:10.1126/science.328.5981.958
P. Marliere, “The farther, the safer: A manifesto for securely navigating synthetic species away from the old living world,” Systems and Synthetic Biology, 3(1-4), 77–84, 2009. doi:10.1007/s11693-009-9040-9
S. F. Yuan & H. S. Alper, “Metabolic engineering of microbial cell factories for production of nutraceuticals,” Microbial Cell Factories, 18(1), 2019. doi:10.1186/s12934-019-1096-y
J. D. Keasling, Metabolic Engineering, 14(3), 189–195, 2012. doi:10.1016/j.ymben.2012.01.004
S. Werner, C. Engler, E. Weber, R. Gruetzner, & S. Marillonnet, “Fast track assembly of multigene constructs using Golden Gate cloning and the MoClo system,” Bioengineered, 3(1), 38-43, 2012. https://doi.org/10.4161/bbug.3.1.18223
L. Li, W. Jiang, & Y. Lu, “A modified Gibson assembly method for cloning large DNA fragments with high GC contents,” Synthetic Metabolic Pathways, 203–209, 2018. doi:10.1007/978-1-4939-7295-1_13
C. Engler & S. Marillonnet “Golden Gate cloning,” in: “DNA Cloning and Assembly Methods,” Methods in Molecular Biology (Methods and Protocols), vol 1116, S. Valla and R. Lale (Eds.) . Humana Press, Totowa, NJ, 2014.
M. A. Speer & T. L. Richard, “Amplified insert assembly: An optimized approach to standard assembly of BioBrickTM genetic circuits,” Journal of Biological Engineering, 5(1), 17, 2011. doi:10.1186/1754-1611-5-17
C. Giménez, L. Curti, & F. Pereyra, “Dos herramientas de la biología sintética,” Revista Hospital Italiano, Buenos Aires, 36(3), 124-128, sept. de 2016.
M. Adli, “The CRISPR tool kit for genome editing and beyond,” Nature Communications, 9(1), 2018. doi:10.1038/s41467-018-04252-2.
C. T. Charlesworth et al. “Identification of pre-existing adaptive immunity to Cas9 proteins in humans,” BioArxhiv, 2018. doi.org/10.1101/243345.
M. Lammoglia, R. Lozano, C. García, C. Avilez, V. Trejo, R. Muñoz, & C. López, “La revolución en ingeniería genética: Sistema CRISPR/Cas,” Investigación en Discapacidad, 5(2), 116-128, agosto de 2016.
A. M Moreno. et al., “Exploring protein orthogonality in immune space: A case study with AAV and Cas9 orthologs.” Preprint at https://www.biorxiv.org/ content/early/2018/01/10/245985.
K.J. Verstrepen, P.J. Chambers, I.S. Pretorius, A. Querol, & G.H. Fleet, The yeast handbook. Heidelberg: Springer, 2006.
C. Peterbauer, T. Maischberger, & D. Haltrich, “Food-grade gene expression in lactic acid bacteria,” Biotechnology Journal, 6(9), 1147–1161, 2011. doi:10.1002/biot.201100034
I. Hernandez, D. Molenaar, J. Beekwilder, H. Bouwmeester, & J. E. T. van Hylckama Vlieg, “Expression of plant flavor fenes in Lactococcus lactis,” Applied and Environmental Microbiology, 73(5), 1544–1552, 2007. doi:10.1128/aem.01870-06
I. Hernández, D. Molenaar, J. Beekwilder, H. Bouwmeester, & J. E. van Hylckama Vlieg, “Expression of plant flavor genes in Lactococcus lactis,” Applied and Environmental Microbiology, 73(5), 1544-1552, 2007.
P. Amon & I. Sanderson, “What is the microbiome?”, Archives of Disease in Childhood. Education & Practice Edition, 102(5), 257–260, 2017. doi:10.1136/archdischild-2016-311643
F. De Filippis, E. Parente, & D. Ercolini, “Recent past, present, and future of the food microbiome,” Annual Review of Food Science and Technology, 9(1), 589–608, 2018. doi:10.1146/annurev-food-030117-012312
S. Boddu & K. Divakar, “Metagenomics insight into environmental microbiome and their application in Food/Pharmaceutical Industry,” Microbial Biotechnology, vol. 2. Application in Food and Pharmacology, 2018. ISBN: 978-981-10-7139-3, 978-981-10-7140-9
E. ,Dugat-Bony, C. Straub, A. Teissandier, D. Onésime, V. Loux, C. Monnet et al., “Overview of a Surface-Ripened Cheese Community Functioning by Meta-Omics Analyses,” PLoS ONE 10(4), e0124360, 2015. https://doi.org/10.1371/journal.pone.0124360
A. Tyagi, A. Kumar, S. V. Aparna, R. H. Mallappa, S. Grover, & V. K. Batish, “Synthetic biology: Applications in the food sector,” Critical Reviews in Food Science and Nutrition, 56(11), 1777–1789, 2014. doi:10.1080/10408398.2013.782534
C. Engler, M. Youles, R. Gruetzner, T. M. Ehnert, S. Werner, J. D. Jones,..., & S. Marillonnet, “A golden gate modular cloning toolbox for plants,” ACS Synthetic Biology, 3(11), 839-843, 2014.
K. Müller, D. Siegel, F. R. Jahnke, K. Gerrer, S. Wend, E. L. Decker,..., & M. D. Zurbriggen, “A red light-controlled synthetic gene expression switch for plant systems,” Molecular BioSystems, 10(7), 1679-1688, 2014.
C. Rogers, & G. E. Oldroyd, “Synthetic biology approaches to engineering the nitrogen symbiosis in cereals,”, Journal of Experimental Botany, 65(8), 1939-1946, 2014.
M.S. Roell, & M. D. Zurbriggen, “The impact of synthetic biology for future agriculture and nutrition,” Current Opinion in Biotechnology, 61, 102–109, 2020. doi:10.1016/j.copbio.2019.10.004