Evaluation of agro-industrial residues produced in Costa Rica for a low-cost culture medium using Bacillus subtilis 168

Main Article Content

Sofía Miranda-Durán
Luis Porras-Reyes
Alexander Schmidt-Durán

Abstract

Agro-industrial residues correspond to all the materials generated from activities that involve the transformation of both crops and livestock to obtain processed or semi-finished products. In Costa Rica, the primary sector of economy generates more than 6.3 trillion tons of organic residues per year. The daily generation of this residues pose environmental and economic problems. In recent years, biotechnological-based alternatives have emerged with the purpose of taking advantage of the high nutritional content of these residues to cultivate microorganisms capable of producing compounds with high demand at a commercial level. The present study evaluates six agro-industrial residues produced in Costa Rica, in order to growth Bacillus subtilis 168.  An optimization of the culture medium was carried out under a complete factorial design 23, where the variables evaluated were carbon, nitrogen and phosphorus sources. Molasses at 10% m/v, wheat bran at 0.5% m/v, and K2HPO4 at 0.01%, as a carbon, nitrogen, and phosphorus sources, respectively, were identified as optimal for the growth of Bacillus subtilis 168.

Article Details

How to Cite
Miranda-Durán, S., Porras-Reyes, L., & Schmidt-Durán, A. (2020). Evaluation of agro-industrial residues produced in Costa Rica for a low-cost culture medium using Bacillus subtilis 168. Tecnología En Marcha Journal, 33(4), Pág. 15–25. https://doi.org/10.18845/tm.v33i4.4807
Section
Artículo científico

References

[1] S. Saval, “Aprovechamiento de residuos agroindustriales: Pasado, presente y futuro,” Bio-Tecnología, vol. 16, no. 2, pp. 14-46, 2012.
[2] L. H. Amaya, C. T. Serna, y C. V. Tovar, “Aprovechamiento de subproductos agropecuarios,” Universidad Nacional Abierta y a Distancia, Sogamoso, Colombia, Contenido Didáctico del Curso, 2011 [en línea]. Disponible en: http://stadium.unad.edu.co/preview/UNAD.php?url=/bitstream/10596/8911/1/Aprovechamie nto%20de%20Subproductos%20Agropecuarios.pdf
[3] X. Wu, J. McLaren, R. Madl, y D. Wang, “Biofuels from lignocellulosic biomass,” en Sustainable Biotechnology, O. Singh, y S. Harvey, eds, Dordrecht, Holanda, pp. 19-41, 2010.
[4] P.T. Vasudevan, M. D. Gagnon, y M. S. Briggs, “Environmentally sustainable biofuels–The case for biodiesel, biobutanol and cellulosic ethanol,” en Sustainable Biotechnology, O. Singh, y S. Harvey, eds, Dordrecht, Holanda, pp. 43-62, 2010.
[5] A. K. Chandel, O. V. Singh, y L. V. Rao, “Biotechnological applications of hemicellulosic derived sugars: state-of-the-art,” en Sustainable Biotechnology, O. Singh, y S. Harvey, eds, Dordrecht, Holanda, pp. 63-81, 2010.
[6] V. Ferreira-Leitão, L. M. Gottschalk, M. A. Ferrara, A. L. Nepomuceno, H. B. Molinari, y E. P. Bon, “Biomass residues in Brazil: availability and potential uses,” Waste and Biomass Valorization, vo. 1, no. 1, pp. 65-76, 2010.
[7] A. L. Demain, “The business of biotechnology,” Industrial Biotechnol, vol. 3, no. 1, pp. 269–283, 2007.
[8] E. J. Vandamme, “Microbial gems: Microorganisms without frontiers,” SIM-News, vol. 57, no. 3, pp. 81-91, 2007.
[9] P. Gallezot, “Conversion of biomass to selected chemical products,” Chemical Society Reviews, vol. 41, no. 4, pp. 1538-1558, 2012.
[10] D. R. Zeigler, Z. Prágai, S. Rodriguez, B. Chevreux, A. Muffler, T. Albert, … y J. B. Perkins, “The origins of 168, W23, and other Bacillus subtilis legacy strains,” Journal of Bacteriology, vol. 190, no. 21, pp. 6983-6995, 2008.
[11] K. Stephenson, y C. R. Harwood, “Influence of a cell-wallassociated protease on production of alpha-amylase by Bacillus subtilis,” Appl. Environ. Microbiol., vol. 64, pp. 2875–2881, 1998.
[12] V. Barbe, S. Cruveiller, F. Kunst, P. Lenoble, G. Meurice, A. Sekowska, y A. Danchin, “From a consortium sequence to a unified sequence: the Bacillus subtilis 168 reference genome a decade later,” Microbiology, vo. 155, no. 6, pp. 1758-1775, 2009.
[13] G. A. Płaza, P. Pacwa, Z. Piotrowska, K. Jangid, y K. A. Wilk, “Agroindustrial wastes as unconventional substrates for growing of Bacillus strains and production of biosurfactant,” Environ Prot Eng, vol. 37, no. 1, pp. 63-71, 2011.
[14] Minitab Inc, Versión 16, Estados Unidos, 2015.
[15] P. S. Murthy, y M. M. Naidu, “Sustainable management of coffee industry by-products and value addition—A review,” Resoures, Conservation and Recycling, vol. 66, pp. 45–58, 2012.
[16] P. Esquivel, y V. M. Jiménez, “Functional properties of coffee and coffee by-products,” Food Research International, vol. 46, no. 2, pp. 488-495, 2012.
[17] J. Aguilar, M. Espinoza, J. Cabanillas, I. Ávila, A. García, J. Julca, y G. Linares, “Evaluación de la cinética de crecimiento de Saccharomyces cerevisiae utilizando un medio de cultivo a base de melaza de caña y suero lácteo,” Agroindustrial Science, vol. 5, no. 1, pp. 37-47, 2015.
[18] I. M. Banat, S. K. Satpute, S. S. Cameotra, R. Patil, y N. V. Nyayanit, “Cost effective technologies and renewable substrates for biosurfactants´ production,” Frontiers in microbiology, vol. 697, no. 5, pp. 1-18, 2014.
[19] J. D. J. S. Legazpi, y J. A. O. Fierro, “Análisis de la producción azucarera en el occidente de México: Caso: valle El Grullo-Autlán, Costa Sur de Jalisco,” CIBA Revista Iberoamericana de las Ciencias Biológicas y Agropecuarias, vol. 2, no. 3, pp. 1-23, 2014.
[20] O. Tabbene, I. B. Slimene, K. Djebali, M. L. Mangoni, M. C. Urdaci, y F. Limam, “Optimization of medium composition for the production of antimicrobial activity by Bacillus subtilis B38,” Biotechnology progress, vol. 25, no. 5, pp. 1267-1274, 2009.
[21] C. López, R. Hernández, C. Suárez, y M. Borrero, “Evaluación del crecimiento y producción de Pleurotus ostreatus sobre diferentes residuos agroindustriales del departamento de Cundinamarca,” Universitas Scientiarum, vol. 13, no. 2, pp. 128-137, 2008.
[22] F. M. Commichau, K. Forchhammer, y J. Stülke, “Regulatory links between carbon and nitrogen metabolism,” Current Opinion in Microbiology, vol. 9, no. 2, pp. 167–172, 2006.
[23] E. C. Álvarez, y L. C. Sánchez, “Evaluación del crecimiento de cuatro especies del género Bacillus sp., primer paso para entender su efecto biocontrolador sobre Fusarium sp.,” Nova, vol. 14, no. 26, pp. 53-62, 2016.
[24] I. A. M. Swinnen, K. Bernaerts, E. J. Dens, A. H. Geeraerd, y J. F. Van Impe, “Predictive modelling of the microbial lag phase: a review,” International Journal of Food microbiology, vol. 94, no. 2, pp. 137-159, 2004.
[25] M. A. Zimmer, J. Tiu, M. A. Collins, y G. Ordal, “Selective Methylation Changes on the Bacillus subtilis Chemotaxis Receptor McpB Promote Adaptation,” The Journal of Biological Chemistry, vol. 275, no. 32, pp. 24264-24272, 2000.
[26] C. V. Rao, G. D. Glekas, y G. W. Ordal, “The three adaptation systems of Bacillus subtilis chemotaxis,” Trends in Microbiology, vol. 16, no. 10, pp. 480-487, 2008.
[27] F. J. de Bruijn, “Stress and environmental regulation of gene expression and adaptation in bacteria: volume 2” New Jersey, Estados Unidos: John Wiley & Sons, Inc., 2016.
[28] N. U. Maheswar, y G. Sathiyavani, “Solubilization of phosphate by Bacillus sp, from groundnut rhizosphere (Arachishypogaea L),” Journal of Chemical and Pharmaceutical Research, vol. 4, no. 8, pp. 4007-4011, 2012.
[29] A. Puri-Taneja, S. Paul, Y. Chen, y F. M. Hulett, “CcpA causes repression of the phoPR promoter through a novel transcription start site, PA6,” Journal of Bacteriology, vol 188, no. 4, pp. 1266-1278, 2006.
[30] D. White, “The physiology and biochemistry of prokaryotes,” Oxford University Press, Reino Unido, pp. 628, 2007.
[31] J. A. Grahovac, Z. Z. Rončević, I. Ž. Tadijan, A. I. Jokić, y J. M. Dodić, “Optimization of media for antimicrobial compounds production by Bacillus subtilis,”. Budapest Acta Alimentaria, vol. 44, no. 3, pp. 427–435, 2015.

Most read articles by the same author(s)