Carbon sequestration in a soil dedicated to the cultivation of pineapple (Ananas comosus (L.) under conventional management and minimum tillage

Main Article Content

Ronald Fonseca-Vargas
Parménides Furcal-Beriguete
Rooel Campos-Rodríguez
Edwin Esquivel-Segura

Abstract

The pineapple, Ananas comosus (L.), is an important crop in Costa Rica with a planting area of approximately 38,000 ha. The objective of the study was evaluate the organic carbon content and biomass of the pineapple plant in the growing stage in a soil under conventional tillage and minimum tillage systems. The experiment was established on a farm located at 10°89›N and 84°65›W, with an altitude from 60 to 92 m above sea level and a slope of 5 % to 15 %. In conventional production, soil preparation leads to the release of carbon into the atmosphere and the loss of organic matter. Somehow, those issues have caused its cultivation to be considered one of the most degrading of the soil, nationwide. Through the application of a minimum tillage treatment and a conventional one, it was possible to appreciate that there are some variations in the nutritional levels of the plant and the soil, while in relation to the productive variables in the evaluated stage it was not possible to determine effects attributable to the difference between treatments. Neither was it possible to show differences in the soil carbon level and the C: N ratio. It is concluded that soil carbon may vary but it is necessary continue with the researcher to demonstrate that minimum pineapple tillage can bring benefits in the storage of organic carbon. It is recommended to continue with the measurements of the analyzed variables, which allow observing what is reported in other related investigations in crops.

Article Details

How to Cite
Fonseca-Vargas, R., Furcal-Beriguete, P., Campos-Rodríguez, R., & Esquivel-Segura, E. (2019). Carbon sequestration in a soil dedicated to the cultivation of pineapple (Ananas comosus (L.) under conventional management and minimum tillage. Tecnología En Marcha Journal, 32(4), Pág. 116–132. https://doi.org/10.18845/tm.v32i4.4797
Section
Artículo científico

References

[1] Food and Agriculture Organization of the United Nations (FAO), “Captura de carbono en los suelos para un mejor manejo de la tierra”, no. 96, Roma, 2002.
[2] S. Brown, J. Sathaye, M. Cannel, and P. Kauppi, “Mitigation of carbon emissions to the atmosphere by forest management”, Commonwealth Forestry Review, vol. 75, no. 1, pp. 80-91, 1996.
[3] R. Lal, “Global carbon pools and fluxes and the impact of agricultural intensification and judicious land use. In Preservation of Land Degradation, Enhancement of Carbon Sequestration and Conservation of Biodiversity through Land Use Change and Sustainable Land Management with a Focus on Latin America and the Caribbean”. World Soil Resources Report, 86, Rome: FAO, 1999.
[4] R. Lal, “Los suelos y el cambio climático”, in Protección del suelo y el desarrollo sostenible, Serie: Medio Ambiente N° 6, A. Callaba, I. Iribarren and P. Fernández, Ed. Madrid: Instituto Geológico y Minero de España, 2005, pp. 163-177.
[5] R. Healy, R. Striegl, T. Russell, G. Hutchinson and G. Livingston, “Numerical Evaluation of Static-Chamber Measurements of Soil—Atmosphere Gas Exchange: Identification of Physical Processes”, Soil Science Society of America Journal, vol. 60, no. 3, pp. 740-747, 1996.
[6] J. Six, S. Ogle, F. Breidt, R. Conant, A. Mosiers and K. Paustian, “The potential to mitigate global warming with no-tillage management is only realized when practiced in the long term”, Global Change Biology, no. 10, pp. 155-160, 2004.
[7] J. Six, E. Elliott and K. Paustian, “Soil macroaggregate turnover and microaggregate formation: a mechanism for C sequestration under no-tillage agriculture”, Soil Biol. Biochem, no. 32, pp. 2099-2103, 2000.
[8] M. Robert, Le sol: Interface dans l’environnement, ressource pour le développement. Paris: Masson, 1996.
[9] Cámara Nacional de Productores y Expostadores de Piña, CANAPEP. San José, Costa Rica, 2019. Disponible en https://canapep.com/historia/
[10] Food and Agriculture Organization, “Sustainable agriculture production: For international agricultural research”, Rep. of the Technical Advisory Com. Consultative Group on International Agricultural Research (CGIAR), Washington, DC, 1989.
[11] R. Follett, “Soil management concepts and carbon sequestration in cropland soils”, Soil and Tillage Research, vol. 61, no. 1-2, pp. 77-92, 2001.
[12] Food and Agriculture Organization of the United Nations, “Conservation Agriculture”, Roma, 2017. Disponible en: http://www.fao.org/publications/card/en/c/981ab2a0-f3c6-4de3-a058-f0df6658e69f/
[13] l. Holdridge, “Ecología basada en zonas de vida” 1ª. ed. San José, Costa Rica: IICA, 1967.
[14) R. Mata, “Mapa digital de suelos de Costa Rica”. Centro de Investigaciones Agronómicas. Universidad de Costa Rica, 2009.
[15] L. Tislade y W. Nelson, “Soil fertility and fertilizers” New York: Macmillan, 1993.
[16] D.A. Angers, M.R. Carter, E.G. Gregorich, M.A. Bolinder, R.G. Donald, R.P. Voroney, C.F. Drury, B.C. Liang, R.R Simard and R.P. Beyaert, “Agriculture Management Effects on Soil Carbon Sequestration in Eastern Canada”, In: Beran M.A. (eds) Carbon Sequestration in the Biosphere. NATO ASI Series (Series I: Global Environmental Change), vol 33. Springer-Verlag Berlin Heidelberg, Quebec, 1995.
[17] E. Malézieux, F. Côte y P. Bartholomew, “Crop environment, plant growth and physiology. Chapter 5.In The Pineapple, Botany, Production and Uses” 69–107, 2003.
[18] Gregory, P.J., Simmonds, L.P., Warren, C.P. 1998. Interactions between plant nutrients, water and carbon dioxide as factors limiting crop yields. Philosophical transactions of the Royal Society of London, Series B, 352: 987-996.
[19] Pearce D W., Cline W R., Achanta A N., Fankhauser S., Pachauri R K., Tol R S J., and Vellinga P. 1996. The social costs of climate change: greenhouse damage and benefits of controls. In: Climate change (1995): Economic and Social Dimentions of Climate Change. Bruce et al (eds). Cambridge University Press, Cambridge.
[20] T. West and W. Post, “Soil organic carbon sequestration rates by tillage and crop rotation: a global data analysis”, Soil Science Society of America Journal, no. 66, pp. 1930-1946, 2002.
[21] A. Franzluebbers and M. Arshad, “Soil Organic Matter Pools during Early Adoption of Conservation Tillage in Northwestern Canada”, Soil Science Society of America Journal, vol. 60, no. 5, pp. 1422-1427, 1996.
[22] E. Krull, J. Skjemstad and J. Baldock, Grains Research & Development Corporation, “Functions of Soil Organic Matter and the Effect on Soil Properties”, No CSO 00029, 2004.
[23] Michelsen, A., Anderson, M., Kjoller, A., Gashew, M., 2004. Carbon stock, soil respiration and microbial biomass in fire- phone tropical glassland, woodland and forest ecosystems. Soil Biology and Biochemistry 36, 1707-1717.
[24] Etcheverria, P., Huygens, D., Godoy, R., Borie, F. and Boeckx, P. 2009. Arbuscular mycorrhizal fungi contribute to 13C and 15N enrichment of soil organic matter in forest soils. Soil Biology and Biochemistry 41, 858-861.
[25] Sisti, C.P.J., dos Santos, H.P., Kohhann, R., Alves, B.J.R., Urquiaga, S. and Boddey, R.M. (2004) Changing carbón and nitrogen stocks in soil under 13 years of conventional or zero tillage in southern Brazil. Soil and Tilage Research 76, 39-58.
[26] Feldpausch, T.R., Rondón, M.A., Fernandes, E.C.M., Riha, S.J., Wandelli, E. 2004. Carbon and nutrient accumulation in secondary forests regenerating from degraded pastures in Central Amazônia, Brazil. Ecological Applications 14, 164-176.
[27] Nair, P.K.R., Nair, V.D., Kumar, B.M., Haile S.G., 2009. Soil carbon sequestration in tropical agroforestry systems: a feasibility appraisal. Environmental Science and Policy. En Prensa
[28] Méndez, J., y Bertsch, F. (2012). Guía para la interpretación de la fertilidad de los suelos de Costa Rica. Asociación Costarricense de la Ciencia del Suelo (ACCS). 118 p.