Effect of culture media substitutions on in vitro growth of Ipecac

Main Article Content

Alexander Jiménez-Rivera
Wayner Montero-Carmona

Abstract

The micropropagation of ipecac has been seen as an alternative to supply the need for materials from producers interested in this crop. However, the uncompetitive costs of traditional tissue culture have hampered their implementation in the production of vitroplants for growing areas. In order to evaluate different substitutions in the composition of the culture media, a comparison on plants growth in different media with substitutions in mineral salts (by hydroponic salts), vitamins (by thiamine or complex B1, B6 and B12) and gelling agent (by corn starch) was made.


Significant differences (a = 0.05) between the evaluated growth characteristics (shoots number, shoots length, leaves number and dry weight) were observed. A multivariate analysis showed a relationship between culture media with hydroponic salts substitution, with vitamins (B1, B6 and B12) substitution and the control media (MS); which influenced the shoots length and the leaves number. On the other hand, the media with corn starch substitution affected the shoots number and the dry weight. This last variable was also influenced by the Low Cost media (substitution of the three components).


Of all treatments evaluated, the Thiamine substitution media was the one that presented the lowest yields; while the Low Cost media shows the highest according to Hotelling - Bonferroni Test. The cost analysis performed showed significant savings (up to 59%) between the Low Cost and the control treatment (MS media).

Article Details

How to Cite
Jiménez-Rivera, A., & Montero-Carmona, W. (2019). Effect of culture media substitutions on in vitro growth of Ipecac. Tecnología En Marcha Journal, 32(4), Pág. 28–38. https://doi.org/10.18845/tm.v32i4.4788
Section
Artículo científico

References

[1] E. Naranjo et al., Avances en la propagación vía embriogénesis somática de Psychotria ipecacuanha (Brot.) Stokes, planta medicinal en peligro crítico, Biotecnología Colombiana, Vol.16, No1, pp. 86–92, 2014.
[2] LF. Oliveira and ER. Martins, A quantitative assessment of genetic erosion in ipecac (Psychotria ipecacuanha), Genetic Resources and Crop Evolution, Vol.49, pp. 607–617, 2002.
[3] Alves-García et al., Variation in emetine and cephaeline contents in roots of wild Ipecac (Psychotria ipecacuanha). Biochemical Systematics and Ecology, Vol.33, pp. 233–243, 2005.
[4] N. Albany et al., Una metodología para la propagación in vitro de Aloe vera L., Revista de la Facultad de Agronomía (Caracas), Vol. 23, No.2 pp 213–222, 2006.
[5] K. Yoshimatsu and K. Shimomura, Cephaelis ipecacuanha A. Richard (Brazilian Ipecac): Micropropagation and the Production of Emetine and Cephaeline, In: Y.P.S. Bajaj (ed), Biotechnology in Agriculture and Forestry: Medicinal and Aromatic Plants, SpringerVerlag, Berlin Heidelberg, Vol.21, pp. 87–103, 1993.
[6] A. Lara et al., Micropropagación de la planta medicinal Psychotria acuminate, Agronomía Costarricense, Vol.27, No.2, pp. 7–20, 2003.
[7] C. Botero et al., Potencial de regeneración de Psychotria ipecacuana (Rubiaceae) a partir de capas delgadas de células, Acta Biológica Colombiana, Vol.20, No.3, pp. 181–192, 2015.
[8] I. Koike et al., Dynamics of Endogenous Indole-3-acetic Acid and Cytokinins During Adventitious Shoot Formation in Ipecac, J Plant Growth Regul, Vol.36, pp. 805–813, 2017.
[9] T. Murashige and F. Skoog, A Revised Medium for Rapid Growth and BioAssays with Tobacco Tissue Cultures, Physiologia Plantarum, Vol.15, No.3, pp. 473–497, 1962.
[10] V. Savangikar, Low cost options for tissue culture technology in developing countries: Physical components of tissue culture technology, IAEA. Vienna, Austria, pp. 17–28, 2004.
[11] N. Daud et al., Provision of low cost media options for in vitro culture of Celosia sp., African Journal of Biotechnology, Vol.10, No.80, pp. 18349–18355, 2011.
[12] G. Romay et al., Almidón modificado de yuca con sustituto económico del agente solidificante para medios de cultivo de tejidos vegetales, Interciencia, Vol.31, No.9, pp. 686–689, 2006.
[13] S. Prakash et al., Low cost options for tissue culture technology in developing countries: Culture media and containers. IAEA. Vienna, Austria, pp. 29–40, 2004.
[14] N. Daud et al., Potential of alternative gelling agents in media for the in vitro micro-propagation of Celosia sp., Internacional Journal of Botany, Vol.7, No.2, pp. 183–188, 2011.
[15] F. Maliro and G. Lameck, Potential of cassava flour as a gelling agent in media for plant tissue cultures, African Journal of Biotechnology, Vol.3, No.4, pp. 244–247, 2004.
[16] R. Romero et al., Uso de complejos comerciales como sustitutos de componentes del medio de cultivo en la propagación in vitro de Laelia anceps. Lankesteriana International Journal on Orchidology, Vol.7, No.2, pp. 353–356, 2007.
[17] A. Azofeifa et al., Uso de abonos foliares comerciales en la elaboración de medios de cultivo, Agronomía Costarricense, Vol.32, No.2. pp. 149–160, 2008.
[18] E. Mbanaso, Effect of multiple subcultures on Musa shoots derived from cassava starch-gelled multiplication medium during micropropagation, African Journal of Biotechnology, Vol.7, No.24, pp. 4491–4494, 2008.
[19] D. Martín et al., Sustancias utilizadas como agentes gelificantes alternativas al agar en medios de cultivo para propagación in vitro. Investigación Agraria y ambiental, Vol.3, No.2, pp. 49–62, 2012.
[20] D. Martín et al., Almidón de papa, agente gelificante alternativo en medios de cultivo para propagación in-vitro de lulo Solanum quitoense Lam., Revista de Ciencias Agrícolas, Vol.30, pp. 3–11, 2013.
[21] R. Sosa et al., Propagación in vitro de camote (Ipomoea batatas (L.) Lam.) en medio de cultivo suplementado con fertilizantes convencionales, Avances en la Investigación Agropecuaria, Vol.21, No.2, pp. 7–24, 2017.
[22] A. Kodym and F. Zapata, Low-cost alternatives for the micropropagation of banana, Plant Cell, Tissue and Organ Culture, Vol.66, pp. 67–71, 2001.
[23] JA. Di Rienzo et al., InfoStat versión 2017, Grupo InfoStat, FCA, Universidad Nacional de Córdoba, Argentina, 2017.
[24] H. Prieto et al., Biotecnología Vegetal: El Cultivo de Tejidos, 1er edición. L. Barrueto, Santiago, Chile, INIA, pp. 31–53, 2005.
[25] P. Abrahamian and A Kantharajah, Effect of vitamins on in vitro organogenesis of plant, Scientific Research, Vol.2, pp. 669–674, 2011.
[26] T. Thorpe et al., The Components of Plant Tissue Culture Media II: Organic Additions, Osmotic and pH Effects, and Support Systems, In: Plant Propagation by Tissue Culture, 3rd edition, Aberystwyth, Wales, Springer, Dordrecht, pp. 115–173, 2008.
[27] MJ. Cañal et al., Fisiología del cultivo in vitro, Biotecnología vegetal, Vol.1, pp. 3–9, 2001.
[28] F. Jiménez and D. Agramonte, Cultivo in vitro y macropropagación como vía de sostenibilidad de la propagación de especies forestales, Biotecnología vegetal, Vol.13, pp. 3–21, 2014.
[29] A. Rodríguez, Organogénesis in vitro de raicilla (Psychotria ipecacuanha) con sustitución de insumos, Tesis Licenciatura, San Carlos, Costa Rica, Instituto Tecnológico de Costa Rica, pp. 91, 2005.
[30] C. Ramage y R. Williams, Mineral nutrition and plant morphogenesis. In Vitro Cellular & Developmental Biology – Plant, Vol.38, pp. 116–124, 2002.
[31] G. Mota et al., Efeito de diferentes concentrações de nitrogênio no desenvolvmento e enraizamento in vitro de Psychotria ipecacuanha, Rubiaceae, In: Seminário de iniciação científica da Embrapa, Brasil, Belém, Embrapa Amazônia Oriental, 2010.
[32] M. Mohamed et al., Corn and potato starch as an agar alternative for Solanum tuberosum micropropagation, African Journal of Biotechnology, Vol.9, pp. 12–16, 2010.

Most read articles by the same author(s)