Use of unmanned aerial vehicles (UAVs) for the monitoring and management on natural resources: a synthesis
Main Article Content
Abstract
The technological development of unmanned aerial vehicles (UAVs) has giving access to emerging applications in both fields of science and engineering. Using remote sensors, satellite analysis, on-site data collection, have been key tools so far for the monitoring of natural resources. UAVs is a cost-effective technology that can collect information quickly and accurately with high spatial resolution. The objective of this work was to review the main characteristics and applications of unmanned aerial vehicles in the management of natural resources with a focus on the Latin American region. This work describes types of existing drones, their advantages, disadvantages and the different types of sensors they can merge. Further, works from Brazil, Peru, and Colombia carried out on this subject were revisited as a guide for Latin America. A series of possible arrangements between UAVs and remote sensors is shown. These arrangements have a wide-open potential to increase the efficiency of data acquisition by increasing its applicability in the field of natural resources. An increase in automation of data acquisition, improvements in flight time performance and automated systems with complex algorithms capable of offering real-time information seems to be the forthcoming improvements of this technology.
Article Details
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
Los autores conservan los derechos de autor y ceden a la revista el derecho de la primera publicación y pueda editarlo, reproducirlo, distribuirlo, exhibirlo y comunicarlo en el país y en el extranjero mediante medios impresos y electrónicos. Asimismo, asumen el compromiso sobre cualquier litigio o reclamación relacionada con derechos de propiedad intelectual, exonerando de responsabilidad a la Editorial Tecnológica de Costa Rica. Además, se establece que los autores pueden realizar otros acuerdos contractuales independientes y adicionales para la distribución no exclusiva de la versión del artículo publicado en esta revista (p. ej., incluirlo en un repositorio institucional o publicarlo en un libro) siempre que indiquen claramente que el trabajo se publicó por primera vez en esta revista.
References
[2] T. Banu, G. Borlea y C. Banu, «The use of drones in Forestry,» Journal of Environmental Science and Engineering, pp. 557-562, 2016.
[3] I. Colomina y P. Molina, «Unmanned aerial systems for photogrammetry and remote sensing: A review,» Journal of photogrammetry and remote sensing, nº 92, pp. 79-97, 2014.
[4] L. Koh y S. Wich, «Dawn of drone ecology: low-cost autonomous aerial vehicles for conservation,» Tropical Conservation Science, vol. II, nº 5, pp. 121-132, 2012.
[5] L. Aguilar, «Evaluación de bosques tropicales mediante el uso de tecnología VANT,» Revista Germinar, nº 19, pp. 14-15, 2016.
[6] L. Pádua, J. Vanko, J. Hruska, T. Adao, S. JJ, E. Peres y R. Morais, «UAS, sensors and data processing in agroforestry: a review towards practical applications,» International Journal of Remote Sensing, nº 38, pp. 2349-2392, 2017.
[7] S. Arriola-Valverde, A. Ferenz-Appel y R. Rimolo-Donadio, «Fotogrametría terrestre con sistemas aéreos autónomos no tripulados,» InvestigaTEC, nº 31, pp. 09-12, 2018.
[8] A. Méndez, J. Vélez, F. Scaramuzza y D. Villaroel, «Los drones como herramienta para el monitoreo de cultivos,» Revista de la bolsa de comercio de Rosario, nº 1524, pp. 6-10, 2015.
[9] J. Richards y X. Jia, Remore Sensing Digital Image Analysis, Springer, 2006.
[10] V. Berrío-Meneses, J. Mosquera y D. Alzate, «Uso de drones para el análisis de imágenes multiespectrales en agricultura de precisión,» Ciencia y Tecnología Alimentaria, nº 13, pp. 28-40, 2015.
[11] R. Austin, Unmmaned aircraft systems: UAVS design, development and deployment, United Kingdom, 2010.
[12] M. Knadel, F. Masís-Meléndez, L. Wollensen de Jonge, P. Moldrup, E. Arthur y M. Humlekrog Greve, «Assesing soil water repellency of a sandy field with visible near infrared spectroscopy,» Journal of near infrared spectroscopy, nº 24, pp. 215-224, December 2015.
[13] M. Seidel, C. Hutengs, B. Ludwig, T.-B. Soren y M. Vohland, «Strategies for the efficient estimation of soil organic carbon at the field sclae with vis-NIR spectroscopy: Spectral libraries and spiking vs. local calibrations,» Geoderma, nº 354, pp. 1-13, 2019.
[14] M. Peña, «Sensores hiperespectrales: Los últimos avances en teledetección,» Ecoamerica, vol. 7, nº 66-70, 2007.
[15] J. Hu, J. Peng, Y. Zhou, D. Xu, R. Zhao, Q. Jiang y T. Fu, «Quantitative estimation of soil salinity using UAV-borne hyperspectral and satellite multispectral images,» Remote Sensing, vol. 11, nº 7, 2019.
[16] G. Blackburn, «Hyperspectral remote sensing of plant pigments,» Journal of experimental botany, vol. 58, nº 4, pp. 855-867, 2007.
[17] B. Cole, J. Mcmorrow y M. Evans, «Spectral monitoring of moorland plant phenology to identify a temporal window for hyperspectral remote sensing of peatland,» ISPRS Journal of photogrammetry and remote sensing, vol. 90, pp. 49-58, 2014.
[18] A. Maliki, G. Owens y D. Bruce, «Capabilities of remote sensing hyperspectral images for the detection of lead contamination: a review,» ISPRS Annals of the photogrammetry, Remote Sensing and Spatial Information Sciences, vol. I, nº 7, pp. 55-60, 2012.
[19] E. Orfanó Figuereido, M. V. Neves d´Oliveira, E. Muñoz Braz, D. d. A. Papa y P. Fearnside, «LIDAR-based estimation of bole biomass for precision management of an Amazon forest: Comparisons of ground-based and remotely sensed estimates,» Remote Sensing of Environment, vol. 187, pp. 281-293, 2016.
[20] A. Cárdenas, L. Rivera, B. Gómez, G. Valencia, H. Acosta y J. Correa, «Short communication: Pollution-and-greenhouse gases measurement system,» Measurement, vol. 129, pp. 565-568, 2018.
[21] J. A. Díaz, D. Pieri, K. Wright, P. Sorensen, R. Kline-Shoder, R. Arkin, M. Fladeland, G. B. M. F. Bland, C. Ramírez, E. Corrales, A. Alan, O. Alegría y D. Díaz, «Unmanned aerial mass spectometer system for in-situ volcanic plume analysis,» Journal of The American society for Mass Spectromery, vol. 26, nº 2, pp. 292-304, 2015.
[22] B. Balsley, D. Lawrence, R. Woodman y D. Fritts, «Fine-scale characteristics of temperature, wind, and turbulence in the lower atmosphere (0-1300 m) over the south Peruvian coast.,» Boundary-Layer Meteorology, vol. 147, nº 1, pp. 165-178, 2013.
[23] A. González, G. Amarillo, M. Amarillo y F. Sarmiento, «Drones aplicados a la agricultura de precisión,» Revista especializada en Ingeniería, vol. 10, pp. 23-27, 2017.
[24] F. Greenwood, «Drones en el horizonte: la nueva frontera de la innovación agrícola,» ICT update, nº 82, pp. 2-4, 2016.
[25] L. Tang y G. Shao, «Drone remote sensing for forestry research and practices,» Journal of Forestry Research, vol. 26, nº 4, pp. 791-797, 2015.
[26] S. George, G. Reyes, D. Rondón, A. Huechacona, P. Moctezuma y S. Proust, «Mapeando el desastre: Uso de drones para la ubicació y evaluación de daño después de un sismo de alta magnitud en el sureste de México,» Desde el Herbario CICY, nº 9, pp. 222-227, 2017.
[27] C. Yuan, Z. Liu y Y. Zhang, «Aerial images-based forest fire detection for firefighting using optical remote sensing techniques and unmmaned aerial vehicle,» Journal of Intelligent and Robotic Systems, vol. 88, pp. 635-654, 2017.
[28] Y.-G. Han, S. H. Yoo y O. Kwon, «Possibility of applying unmmaned aerial vehicle (UAV) and mapping software for the monitoring of waterbirds and thir habitats,» Journal of Ecology and Environment, vol. 41, pp. 21-27, 2017.
[29] B. Ivosevic, Y.-G. Han, S. H. Yoo y O. Kwon, «Monitoring butterflies with an unmmaned aerial vehicle: current possibilities and future potentials,» Journal of Ecology and Environment, vol. 41, pp. 12-21, 2017.
[30] C. Zhao, C. Zhang, S. Yang, C. Liu, H. Xiang, Y. Sun, Z. Yang, Y. Zhang, X. Yu, N. Shao y Q. Yu, «Calculating e-flow using UAV and ground monitoring,» Journal of Hydrology, vol. 552, pp. 351-365, 2017.
[31] K. Langhammer y T. Vacková, «Detection and mapping of teh geomorphic effects of flooding using UAV photogrammetry,» Pure and Applied Geophysics, vol. 175, nº 9, pp. 3223-3245, 2018.
[32] S. Hemmelder, W. Marra, H. Markies y S. De Jong, «Monitoring river morphology and bank erosion using UAV imagery- A case study of the river Buech, Hautes-Alpes, France,» International Journal of Applied Earth Observation and Geoinformation, vol. 73, pp. 428-437, 2018.
[33] F. Bandini, J. Jakobsen, D. Olesen, J. A. Reyna-Gutierrez y P. Bauer-Gottwein, «Measuring water level in rivers and lakes from lightweight Unmmaned Aerial Vehicles,» Journal of Hydrology, vol. 548, pp. 237-250, 2017.
[34] F. Bandini, A. López-Tamayo, G. Merediz-Alonso, D. Olesen, J. Jakobsen, S. Wang, M. García y P. Bauer-Gottwein, «Unmmaned aerial vehicle observations of water surfaces elevation and bathymetry in the cenotes and lagoons of the Yucatán Peninsula, Mexico,» Hydrology Journal, vol. 26, nº 7, pp. 2213-2228, 2018.
[35] J. Fernández-Lozano y G. Gutiérrez-Alonso, «Aplicaciones geológicas de los drones,» Revista de la Sociedad Geológica de España, vol. 29, nº 1, pp. 89-105, 2016.
[36] N. Pineux, J. Lisein, G. Swerts, C. Bielders, P. Lejeune, G. Colinet y A. Degre, «Can DEM time series produced by UAV be used to quantify diffuse erosion in an agricultural watershed?,» Geomorphology, vol. 280, pp. 122-136, 2017.
[37] H. Obanawa y Y. Hayakawa, «Variations in volumetric erosion rates of bedrocks cliffs on a small inaccesible coastal island determined using measurements by an unmanned aerial vehicle with structure-from-motion and terrestrial laser scanning,» Progress in Earth and Planetary Science, vol. 5, nº 1, pp. 33-42, 2018.
[38] A. Clark, «Small unmmaned aerial systems comparative analysis for the application to coastal erosion monitoring,» GeoResJ, vol. 13, pp. 175-185, 2017.
[39] K. Vivaldini, T. Martinelli, V. Guizilini, J. Souza, M. Oliveira y F. Ramos, «UAV route planning for active disease classification,» Autonomous robots, vol. 43, nº 5, pp. 1137-1153, 2019.
[40] A. Klein-Hentz, A. Dalla Corte, S. Péllico, M. Strager y E. Schoeninger, «Tree detection: automatic tree detection using UAV-based data,» Floresta, vol. 48, nº 3, pp. 393-402, 2018.
[41] S. Baena, D. Soyd y J. Moat, «UAV´s pursuit of plant conservation-real world experiences,» Ecological informatics, vol. 47, pp. 2-9, 2018.
[42] I. Yano, J. Alvez, W. Santiago y B. Mederos, «Identification of weeds in sugarcane fields through images taken by UAV and Random Forest classifier,» IFAC-PapersOnline, vol. 49, nº 16, pp. 415-420, 2016.
[43] N. Tushev, T. Bewick y C. Ellis, «Documentando la ocupación ilegal de tierras desde el aire,» ICT Update, vol. 82, pp. 16-17, 2016.
[44] O. Barrero y S. Perdomo, «RGB and multispectral UAV image fusion for Graminae weed detection in rice fields,» Precision Agriculture, vol. 19, nº 5, pp. 809-822, 2018.
[45] S. Arriola, K. Villagra, M. Mémdez-Morales, N. Gómez, S.-Q. Milton y R. Rímolo-Donadío, «Desarrollo y validación de una metodología para la cuantificación de la erosión hídrica a través de fotogrametría UAS,» Tecnología en Marcha, vol. 32, pp. 43-52, 2019.