Effect of the mixture of Anacardium occidentale / Cocos nucifera oils in diesel on the corrosion rate of carbon steel in saline

Main Article Content

Tomás Darío Marín-Velásquez
Dany Day Josefina Arriojas-Tucuyo

Abstract

In the research, the effect of mixtures of Anacardium occidentale oil and Cocos nucifera diluted in diesel oil was evaluated, as an anticorrosive coating applied to carbon steel, in saline solution. Pieces of carbon steel bars used as reinforcements in construction were used, which were treated with a 50:50 mixture of the oils, diluted in concentrations of 10, 20, 30 and 50% in diesel. The steel pieces were immersed in a 10% NaCl saline solution for 360 days at a constant temperature of 50 ° C. In addition, a control sample without treatment was also subjected to the saline medium and another sample treated only with diesel oil. Three replications were made per treatment and the results of corrosion rate by weight loss were analyzed, by Kruskal-Wallis nonparametric variance analysis, with the statistical program Statgraphics Centurion XVI.I. The treatments with oil blends in diesel, achieved the reduction of the corrosion rate with efficiencies between 96.59 and 98.30%, with statistically significant results, where the 50% blend stands out with significant difference compared to the others with 95% level of trust.

Article Details

How to Cite
Marín-Velásquez, T. D., & Arriojas-Tucuyo, D. D. J. (2020). Effect of the mixture of Anacardium occidentale / Cocos nucifera oils in diesel on the corrosion rate of carbon steel in saline. Tecnología En Marcha Journal, 33(4), Pág. 37–46. https://doi.org/10.18845/tm.v33i4.4484
Section
Artículo científico

References

[1] R. Pierre, Handbook of corrosion engineering. New York: McGraw-Hill, 2000.
[2] Z. Ahmad, Principles of corrosion engineering and corrosion control. Oxford: Elsevier, 2006.
[3] R. Pierre, Corrosion inspection and monitoring. Hoboken, New Jersey: John Wiley & Sons, 2007.
[4] J.A. Salazar-Jiménez, “Introducción al fenómeno de corrosión: tipos, factores que influyen y control para la protección de materiales (Nota técnica)”, Tecnología en Marcha, vol. 28, n° 3, pp. 127-136, julio-septiembre 2015.
[5] A.D.V. Moreno, T. Pérez y M. Martínez, El fenómeno de la corrosión en estructuras de concreto reforzado. Sanfandila, Querétaro, México: Instituto mexicano del transporte, 2001.
[6] M.A. Castillo. (2016). Carrocería y pintura. Propiedades anticorrosivas de los recubrimientos [Online]. Disponible en: http://www.centro-zaragoza.com
[7] NRF-004-PEMEX-2011, Protección con recubrimientos anticorrosivos a instalaciones superficiales de ductos. México DF: Comité de normalización de petróleos mexicanos y organismos subsidiarios, 2011.
[8] K. Binte y T. Binte, “Cashew nut oil derivative: an alternative corrosion inhibitor for mild steel” in International Conference on Chemical Engineering 2011. Dhaka, Bangladesh.
[9] P. García, L. Guerra, J. Quintero, D. Rodríguez, Y. Sosa y A. Tejedor, “Extracción del aceite de la cáscara de la nuez de la India (Anacardium Occidentale) para el tratamiento superficial de metales”, Revista de Iniciación Científica, vol. 2, n° 2, pp. 103-107, diciembre 2016.
[10] M. Hassan y S.B. Sobri, “Corrosion inhibition studies of cashew nut (Anacardium occidentale) on carbon steel in 1.0 M Hydrochloric Acid Environment”, Materials Letters, vol. 229, pp. 82-84, octubre 2018.
[11] S.A. Adzor y B.O. Udoye, “Corrosion inhibitive effects of coconut (Cocos nucifera linn) water for mild steel in acidic médium”, European Journal of Material Sciences, vol.3, n°.2, pp.1-12, mayo 2016.
[12] L.M. Rivera-Grau, M. Casales, I. Regla, D.M. Ortega-Toledo, D. Cuervo, J. Asencio, J.G. González-Rodríguez y L. Martiné-Gómez, “Corrosion inhibition by a coconut oil modified imidazoline for carbon steel under the combined effect of CO2 and H2S”, Int. J. Electrochem. Sci., vol. 7, pp. 12610-12620, 2012.
[13] S.A. Umoren, I.B. Obot, A.U. Israel, P.O. Asuquo, M.M. Solomon, U.M. Eduok y A.P. Udoh, “Inhibition of mild steel corrosion in acidic medium using coconut coir dust extracted from water and methanol as solvents”, Journal of Industrial and Engineering Chemistry, vol. 20, n°. 5, pp. 3612-3622, septiembre 2014.
[14] P.R. Vijayalakshmi, R. Rajalakshmi y S. Subhashini, “Corrosion Inhibition of Aqueous Extract of Cocos nucifera - Coconut Palm - Petiole Extract from Destructive Distillation for the Corrosion of Mild Steel in Acidic Medium”, Portugaliae Electrochimica Acta, vol. 29, n°. 1, pp. 9-21, 2011.
[15] NTP 341.031, Hormigón (concreto). Barras de acero al carbono con resaltes y lisas para hormigón (concreto) armado. Especificaciones. Lima, Perú: Comisión de reglamentos técnicos y comerciales – INDECOPI, 2008.
[16] Standard Test Methods for Specific Gravity, Apparent, of Liquid Industrial Chemicals, ASTM D891, 2009.
[17] Standard Test Methods for pH of Water, ASTM D1293, 2012.
[18] Standard Test Methods for Electrical Conductivity and Resistivity of Water, ASTM D1125, 2014.
[19] C.P. Dasilva, F.I. Restrepo, I.A. Peralta, M.M. Vásquez, M.L. Portura y Y.A. Portura, “Extracción de aceite de Coco (Cocos nuciferas) como estrategias de aprovechamiento de los productos locales de Mitú”, Vaupés Innova, vol. 1, pp. 82-89, febrero 2017.
[20] L.L. Wong, S.I. Martin y R.B. Rebak, “Methods to Calculate Corrosion Rates for Alloy 22 from Polarization Resistance Experiments”. In 2006 ASME Pressure Vessels and Piping Division Conference. Vancouver, Canadá.
[21] R.W. Revie y H.H. Uhlig, Corrosion And Corrosion Control. An Introduction to Corrosion Science and Engineering. Hoboken, New Jersey: John Wiley & Sons, 2008.
[22] T. Dioses, “Patrones de distribución y abundancia del jurel Trachurus murphyi en el Perú”, Rev. peru. biol. número especial, vol. 20, pp. 067- 074, septiembre 2013.
[23] F. Echeverría, N. Aguirre, J.G. Castaño, A.C. Valderrama, J.D. Peña y C. Giudice, “Caracterización fisicoquímica y biológica de la bahía de Cartagena en la zona de Mamonal para la evaluación de pinturas antiincrustantes en condiciones estáticas”, Revista Facultad de Ingeniería n° 39, pp. 7-20, marzo 2007.
[24] L. Gómez y Y.P. Villabona, “Determinación de la corrosión en probetas de hormigón sumergidas en solución salina”, Tesis de licenciatura, Facultad de Ingeniería Programa de Ingeniería Química Cartagena de Indias, D.T y C, Universidad de Cartagena, 2012.
[25] M.P. Holguín, J.L. Tristancho y D.Y. Peña, “Determinación de la resistencia a la corrosión de los biomateriales Ti6Al4V y 316L, mediante análisis gravimétrico”, Scientia et Technica, vol. 20, n°. 2, junio 2015.
[26] O. Pérez, J. Díaz, L. Zumalacárregui y O. Gozá, “Evaluación de propiedades físicas de mezclas etanol-agua (II)”, Rev. Fac. Ing. Univ. Antioquia, n° 52, pp. 62-74, marzo, 2010.
[27] SurfaceSWDensity08, “Density of seawater at the sea surface”, in Railsback's Some Fundamentals of Mineralogy and Geochemistry [Online]. Disponible en: http://www.gly.uga.edu/railsback/Fundamentals/SurfaceSWDensity08.pdf
[28] C. Irrgang, J. Saynisch y M. Thomas, “Impact of variable seawater conductivity on motional induction simulated with an ocean general circulation model”, Ocean Science, vol.12, n°. 1, pp. 129-136, enero 2016.
[29] Y. Nakano y Y.W. Watanabe, “Reconstruction of pH in the Surface Seawater over the North Pacific Basin for All Seasons Using Temperature and Chlorophyll-a”, Journal of Oceanography, vol. 61, n°. 4, pp. 673-680, agosto 2005
[30] N.H. Jayadas y K. Prabhakaran, “Elucidation of the corrosion mechanism of vegetable oil based lubricants”, in STLE/ASME International Joint Tribology Conference. San Antonio, TX, USA, octubre 2006.
[31] E.M. Lluveras, J. Martínez, L.D.C. González y J.A. Fundora, “Aplicación de software estadísticos y modelos matemáticos para la evaluación de la velocidad de corrosión en el acero”, Rev. U.D.C.A Act. & Div. Cient., vol. 21, n°.1, pp. 179-186, Enero-Junio 2018.