Biotechnological potential of marine fungi in coastal areas of Costa Rica

Main Article Content

Stephannie Masís Ramos
Paola Meléndez-Navarro
Erika Méndez-Rodríguez

Abstract

Marine mycology consists a diverse group, whose characteristic of survival in hostile environments and their adaptations makes them attractive for obtaining metabolites and diverse biotechnological applications. Among its utilities, it is reported the production of alkaloids, lipids, enzymes, pigments, compounds with medical application, within others. These fungi usually inhabit tropical, subtropical, and temperate climates; therefore, due to the tropical climate and geographical position that Costa Rica possesses, the country is promising for the exploration and exploitation of the mycological diversity associated to the organisms in which marine fungi usually lodge, such as marine sponges, algae and plants located in the sea or mangroves. Thus, this article aims to highlight the biotechnological potential of mycoflora in the coastal areas of Costa Rica.

Article Details

How to Cite
Masís Ramos, S., Meléndez-Navarro, P., & Méndez-Rodríguez, E. (2021). Biotechnological potential of marine fungi in coastal areas of Costa Rica. Tecnología En Marcha Journal, 34(2), Pág. 48–59. https://doi.org/10.18845/tm.v34i2.4430
Section
Artículo científico

References

S. Hasan, M. Ansari, A. Ahmad, and M. Mishra, “Major bioactive metabolites from marine fungi: A Review,” Bioinformation, vol. 11, no. 4, pp. 176–181, 2015, doi: 10.6026/97320630011176.

E. G. Jones and K. L. Pang, Marine fungi: and fungal-like organisms. Berlin, Germany: Walter de Gruyter, 2012.

E. B. G. Jones et al., “Classification of marine Ascomycota, Basidiomycota, Blastocladiomycota and Chytridiomycota,” Fungal Divers., vol. 73, no. 1, pp. 1–72, 2015, doi: 10.1007/s13225-015-0339-4.

J. F. Imhoff, “Natural products from marine fungi - Still an underrepresented resource,” Mar. Drugs, vol. 14, no. 1, p. 19, 2016, doi: 10.3390/md14010019.

P. Cicatiello, A. M. Gravagnuolo, G. Gnavi, G. C. Varese, and P. Giardina, “Marine fungi as source of new hydrophobins,” Int. J. Biol. Macromol., vol. 92, pp. 1229–1233, 2016, doi: 10.1016/j.ijbiomac.2016.08.037.

E. Kohlmeyer and J. Kohlmeyer, Marine Mycology: The Higher Fungi, vol. 72, no. 3. New York, United States: Academic Press, 1980.

I. S. Wehrtmann and J. Cortés, Marine Biodiversity of Costa Rica, Central America. Costa Rica: Springer Science & Business Media, 2009.

T. A. Richards, M. D. M. Jones, G. Leonard, and D. Bass, “Marine Fungi: Their Ecology and Molecular Diversity,” Ann. Rev. Mar. Sci., vol. 4, no. 1, pp. 495–522, 2012, doi: 10.1146/annurev-marine-120710-100802.

T. A. Richards et al., “Molecular diversity and distribution of marine fungi across 130 european environmental samples,” Proc. R. Soc. B Biol. Sci., vol. 282, no. 1819, 2015, doi: 10.1098/rspb.2015.2243.

K. Duarte, T. A. P. Rocha-Santos, A. C. Freitas, and A. C. Duarte, “Analytical techniques for discovery of bioactive compounds from marine fungi,” TrAC - Trends Anal. Chem., vol. 34, no. 1, pp. 97–110, 2012, doi: 10.1016/j.trac.2011.10.014.

S. Agrawal, A. Adholeya, C. J. Barrow, and S. K. Deshmukh, “Marine fungi: An untapped bioresource for future cosmeceuticals,” Phytochem. Lett., vol. 23, no. November 2017, pp. 15–20, 2018, doi: 10.1016/j.phytol.2017.11.003.

T. S. Bugni and C. M. Ireland, “Marine-Derived Fungi: A Chemically and Biologically Diverse Group of Microorganisms,” Nat. Prod. Rep., vol. 21, no. 1, pp. 143–163, 2004, doi: 10.1002/chin.200417289.

Q. Li and G. Wang, “Diversity of fungal isolates from three Hawaiian marine sponges,” Microbiol. Res., vol. 164, no. 2, pp. 233–241, 2009, doi: 10.1016/j.micres.2007.07.002.

P. R. Jensen and W. Fenical, “Fungi in marine environments,” Fungal Divers., vol. 7, pp. 293–315, 2002.

G. Wang, “Diversity and biotechnological potential of the sponge-associated microbial consortia,” J. Ind. Microbiol. Biotechnol., vol. 33, no. 7, pp. 545–551, 2006, doi: 10.1007/s10295-006-0123-2.

L. Dufossé, M. Fouillaud, Y. Caro, S. A. S. Mapari, and N. Sutthiwong, “Filamentous fungi are large-scale producers of pigments and colorants for the food industry,” Curr. Opin. Biotechnol., vol. 26, pp. 56–61, 2014, doi: 10.1016/j.copbio.2013.09.007.

R. N. Lima and A. L. M. Porto, “Recent Advances in Marine Enzymes for Biotechnological Processes,” Adv. Food Nutr. Res., vol. 78, pp. 153–192, 2016, doi: 10.1016/bs.afnr.2016.06.005.

R. Xu, G. M. Xu, X. M. Li, C. S. Li, and B. G. Wang, “Characterization of a newly isolated marine fungus Aspergillus dimorphicus for optimized production of the anti-tumor agent wentilactones,” Mar. Drugs, vol. 13, no. 11, pp. 7040–7054, 2015, doi: 10.3390/md13117040.

J. Silber, A. Kramer, A. Labes, and D. Tasdemir, “From discovery to production: Biotechnology of marine fungi for the production of new antibiotics,” Mar. Drugs, vol. 14, no. 7, p. 137, 2016, doi: 10.3390/md14070137.

J. Davies and D. Davies, “Origins and evolution of antibiotic resistance,” Microbiol. Mol. Biol. Rev., vol. 74, no. 3, pp. 417–433, 2010, doi: 10.1128/MMBR.00016-10.

L. Xu, W. Meng, C. Cao, J. Wang, W. Shan, and Q. Wang, “Antibacterial and antifungal compounds from marine fungi,” Mar. Drugs, vol. 13, no. 6, pp. 3479–3513, 2015, doi: 10.3390/md13063479.

S. K. Deshmukh, V. Prakash, and N. Ranjan, “Marine fungi: A source of potential anticancer compounds,” Front. Microbiol., vol. 8, no. JAN, pp. 1–24, 2018, doi: 10.3389/fmicb.2017.02536.

J. W. Blunt, B. R. Copp, M. H. G. Munro, P. T. Northcote, and M. R. Prinsep, “Marine natural products,” Nat. Prod. Rep., vol. 28, no. 2, pp. 196–268, 2011, doi: 10.1039/c005001f.

M. F. Qiao, N. Y. Ji, X. H. Liu, K. Li, Q. M. Zhu, and Q. Z. Xue, “Indoloditerpenes from an algicolous isolate of Aspergillus oryzae,” Bioorganic Med. Chem. Lett., vol. 20, no. 19, pp. 5677–5680, 2010, doi: 10.1016/j.bmcl.2010.08.024.

F. Song et al., “Trichodermaketones A-D and 7-O-methylkoninginin D from the marine fungus Trichoderma koningii,” J. Nat. Prod., vol. 73, no. 5, pp. 806–810, 2010, doi: 10.1021/np900642p.

B. Wu, V. Oesker, J. Wiese, R. Schmaljohann, and J. F. Imhoff, “Two new antibiotic pyridones produced by a marine fungus, Trichoderma sp. strain MF106,” Mar. Drugs, vol. 12, no. 3, pp. 1208–1219, 2014, doi: 10.3390/md12031208.

T. Veerasingam et al., “Antibacterial efficacy of Penicillium chermesinum TTMF3 isolated from marine soils of Andaman and Nicobar Islands, India,” Prog. Biosci. Bioeng., vol. 2, no. 1, pp. 1208–1219, 2018, doi: 10.29269/pbb2018.v2i1.15.

X. Li, X. M. Li, G. M. Xu, C. S. Li, and B. G. Wang, “Antioxidant metabolites from marine alga-derived fungus Aspergillus wentii EN-48,” Phytochem. Lett., vol. 7, no. 1, pp. 120–123, 2014, doi: 10.1016/j.phytol.2013.11.008.

C. Vílchez, E. Forján, M. Cuaresma, F. Bédmar, I. Garbayo, and J. M. Vega, “Marine carotenoids: Biological functions and commercial applications,” Mar. Drugs, vol. 9, no. 3, pp. 319–333, 2011, doi: 10.3390/md9030319.

C. Corinaldesi, G. Barone, F. Marcellini, A. Dell’Anno, and R. Danovaro, “Marine microbial-derived molecules and their potential use in cosmeceutical and cosmetic products,” Mar. Drugs, vol. 15, no. 4, pp. 1–21, 2017, doi: 10.3390/md15040118.

C. Gómez, S. Palma, S. Calvo, P. Riobó, and P. Robledo, Alimentación, nutrición y cáncer: prevención y tratamiento. Madrid, España: UNED, 2016.

S.-K. Kim and F. Toldrá, Marine Enzymes Biotechnology: Production and Industrial Applications, Part II-Marine Organisms Producing Enzymes. Cambridge, United States: Elsevier Science, 2016.

A. Matuszewska et al., “Laccase purified from Cerrena unicolor exerts antitumor activity against leukemic cells,” Oncol. Lett., vol. 11, no. 3, pp. 2009–2018, 2016, doi: 10.3892/ol.2016.4220.

R. C. Bonugli-Santos et al., “Marine-derived fungi: Diversity of enzymes and biotechnological applications,” Front. Microbiol., vol. 6, no. MAR, 2015, doi: 10.3389/fmicb.2015.00269.

P. H. Mainardi et al., “Laccase production in bioreactor scale under saline condition by the marine-derived basidiomycete Peniophora sp. CBMAI 1063,” Fungal Biol., vol. 122, no. 5, pp. 302–309, 2018, doi: 10.1016/j.funbio.2018.01.009.

A. W. F. Duarte et al., “Taxonomic assessment and enzymes production by yeasts isolated from marine and terrestrial Antarctic samples,” Extremophiles, vol. 17, no. 6, pp. 1023–1035, 2013, doi: 10.1007/s00792-013-0584-y.

K. Malik, J. Tokkas, and S. Goyal, “Microbial Pigments : A review,” Int J Microb. Res Technol, vol. 1, no. 4, pp. 361–365, 2012.

M. Venkatachalam et al., “Partial characterization of the pigments produced by the marine-derived fungus Talaromyces albobiverticillius 30548. Towards a new fungal red colorant for the food industry,” J. Food Compos. Anal., vol. 67, pp. 38–47, 2018, doi: 10.1016/j.jfca.2017.12.036.

A. Ulken, R. Víquez, C. Valiente, and M. Campos, “Marine fungi (Chytridiornycetes and Thraustochytriales) frorn a rnangrove area at Punta Morales, Golfo de Nicoya, Costa Rica.,” Rev. Biol. Trop., vol. 38, no. 2, pp. 243–250, 1990, doi: 10.15517/rbt.v38i2.25054.

A. Calderón, “Aislamiento e identificación de hongos en octocorales del Caribe de Costa Rica,” Tesis de maestría, Escuela de medicina veterinaria, Universidad Nacional, Heredia, Costa Rica, 2016.

C. Benavides-Varela, J. Samper-Villarreal, and J. Cortés, “Cambios en la cobertura de manglares en Bahía Culebra, Pacífico Norte de Costa Rica (1945-2010),” Rev. Biol. Trop., vol. 64, no. 3, pp. 955–964, 2016, doi: 10.15517/rbt.v64i3.21464.

CIMAR, “Proyectos Vigentes para el 2020. Biodiversidad marina,” 2020. http://www.cimar.ucr.ac.cr/programas/proyectos-de-investigacion.html.

A. Patel, S. Liefeldt, U. Rova, P. Christakopoulos, and L. Matsakas, “Co-production of DHA and squalene by thraustochytrid from forest biomass,” Sci. Rep., vol. 10, no. 1, pp. 1–12, 2020, doi: 10.1038/s41598-020-58728-7.

B. Rusu, D. Francisc, and D. Cristian Vodnar, “DHA production by Schizochytrium limacinum SR-21 using crude glycerol as carbon source,” Lucr. Ştiinţifice, vol. 60, no. 1, pp. 21–26, 2018, [Online]. Available: https://www.researchgate.net/publication/325949322.

E. Caamaño et al., “Isolation and molecular characterization of Thraustochytrium strain isolated from Antarctic Peninsula and its biotechnological potential in the production of fatty acids,” Brazilian J. Microbiol., vol. 48, no. 4, pp. 671–679, Oct. 2017, doi: 10.1016/j.bjm.2017.01.011.

B. Negi, D. Kumar, and D. S. Rawat, “Marine Peptides as Anticancer Agents: A Remedy to Mankind by Nature,” Curr. Protein Pept. Sci., vol. 18, no. 9, pp. 885–904, 2017, doi: 10.2174/1389203717666160724200849.

E. Houndjinou, El manglar: un ecosistema para conservar, vol. 1. San José, Costa Rica: Fundación Neotrópica, 2013.

C. F. Pérez Hemphill, G. Daletos, Z. Liu, W. Lin, and P. Proksch, “Polyketides from the Mangrove-derived fungal endophyte Pestalotiopsis clavispora,” Tetrahedron Lett., vol. 57, no. 19, pp. 2078–2083, 2016, doi: 10.1016/j.tetlet.2016.03.101.

K. D. García Méndez, “Asociaciones entre moluscos Heterobranquios (Mollusca: Gastropoda) y macroalgas en el Pacífico de Costa Rica,” Tesis de licenciatura, Facultad de ciencias, Universidad de Costa Rica, San José, Costa Rica, 2015.

H. F. Sun et al., “Asperolides A-C, tetranorlabdane diterpenoids from the marine alga-derived endophytic fungus Aspergillus wentii EN-48,” J. Nat. Prod., vol. 75, no. 2, pp. 148–152, 2012, doi: 10.1021/np2006742.