Identification of Organic Explosives Clues Post-Explosion by GC-MS And GC-NPD Methods
Main Article Content
Abstract
Methods for the identification of explosives by means of Gas Chromatography Mass Spectrometry (GC-MS) and Gas Chromatography with Nitrogen Phosphorus Detectors (GC-NPD) were implemented and validated. The methods established included the analysis of the following explosive substances: TNT, TNB, 2,4-DNT, 2,6-DNT, 2-NT, 3-NT, 4-NT, PETN, NG, RDX and tetril. For each analyte, the detection limit, the variability in retention time for each analyte, in terms of repeatability and intermediate precision were evaluated by using both chromatography techniques. By means of GC-MS the correlations found between the mass spectrum of the standards and those of the analytes went over 90% for the majority of the nitrotoluenes and for some stabilizers of smoke-free gunpowder. The GC-NPD analysis is an alternative method for the identification of the same analytes done by using GC-MS, with the only exceptions of PETN and 1,3,5 -TBN. The detection limits of these two compounds were inferior with respect to the ones reached by GC-MS. Finally, veracity and effectiveness for both methods were proven by analysing post-explosion samples of six explosive materials. All the explosion events were developed under controlled situations. The samples were extracted through organic solvents; then they were analysed by TLC, GC-MS and GC-NDP. This methods allowed the identification at least of one explosive component in the majority of the samples (83%).
Article Details
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
Los autores conservan los derechos de autor y ceden a la revista el derecho de la primera publicación y pueda editarlo, reproducirlo, distribuirlo, exhibirlo y comunicarlo en el país y en el extranjero mediante medios impresos y electrónicos. Asimismo, asumen el compromiso sobre cualquier litigio o reclamación relacionada con derechos de propiedad intelectual, exonerando de responsabilidad a la Editorial Tecnológica de Costa Rica. Además, se establece que los autores pueden realizar otros acuerdos contractuales independientes y adicionales para la distribución no exclusiva de la versión del artículo publicado en esta revista (p. ej., incluirlo en un repositorio institucional o publicarlo en un libro) siempre que indiquen claramente que el trabajo se publicó por primera vez en esta revista.
References
J. Akhavan, The Chemistry of Explosives, 2nd ed. London: RSC, 2004, pp. 21-27, 149.
R. Meyer, J. Köhler, A. Homburg, Eds. Explosives, 6th ed. Germany: WILEY-VCH Verlag, 2007, pp. 131-132.
A. Beveridge, Ed., Forensic Investigation of Explosions, 2nd ed., (International Forensic Science and Investigations Series). U.S.A.: CRC Press, 2011, pp. 4-23.
S. Venugopalan, Demystifying explosives: Concepts in high energy materials. Russland: Elsevier, 2014, pp. 1-14.
T. Urbanski, Chemistry and technology of explosives, vol. 1. Poland: Pergamon Press, 1964, pp 1-6, 248-255, 268-285.
P. Warey, Ed., New research on hazardous materials. New York: Nova Science Publishers, Inc., 2007, pp 371-373.
“Explosives analysis in the environment,” in Encyclopedia of Analytical Chemistry, vol. 3, John Wiley & Sons Ltd. U.S.A., 2006, pp. 2402-2403.
M. Peterson, “TNT and 4-amino-2,6-dinitrotoluene influence on germination and early seedling development of tall fescue”, in Elsevier, 93, 1995, pp. 57-58.
A. Hewitt, T. Jenkins, and T. Ranney, “On-site gas chromatographic determination of explosives in soils”, in Field analytical chemistry and technology, vol. 5, 2001, pp. 228-229.
US Environmental Protection Agency, “Method 8515: Colorimetric screening method for trinitrotoluene (TNT) in soil.” http://www.epa.gov/solidwaste/hazard/testmethods/sw846/pdfs/8515.pdf. (Recuperado el 26 de julio de 2015).
US Environmental Protection Agency, “Method 8510: Colorimetric screening procedure for RDX and HMX in soil.” http://www.epa.gov/solidwaste/hazard/testmethods/sw846/pdfs/8510.pdf. (Recuperado el 26 de julio de 2015).
US Environmental Protection Agency, “Method 4050: TNT explosives in soil by inmunoassay.” http://www.epa.gov/solidwaste/hazard/testmethods/sw846/pdfs/8510.pdf. (Recuperado el 26 de julio de 2015).
US Environmental Protection Agency, “Method 4051: Hexahydro-1,3,5-trinitro-1,3,5-triazine (RDX) in soil by inmunoassay.” http://www.epa.gov/solidwaste/hazard/testmethods/sw846/pdfs/8510.pdf. (Recuperado el 26 de julio de 2015).
US Environmental Protection Agency, “Method 8330A: Nitroaromatics and nitramines by high performance liquid chromatography (HPLC).” http://www.epa.gov/solidwaste/hazard/testmethods/sw846/pdfs/8330a.pdf. (Recuperado el 26 de julio de 2015).
US Environmental Protection Agency, “Method 8330B: Nitroaromatics, nitramines, and nitrate esters by high performance liquid chromatography (HPLC).” http://www.epa.gov/solidwaste/hazard/testmethods/pdfs/8330b.pdf. (Recuperado el 26 de julio de 2015).
US Environmental Protection Agency, “Method 8095: Explosives by Gas Chromatography.” http://www.epa.gov/solidwaste/hazard/testmethods/sw846/pdfs/8095.pdf. (Recuperado el 26 de julio de 2015).
US Environmental Protection Agency, “Method 529: Determination of explosives and related compounds in drinking water y solid phase extraction and capillary column gas chromatography/mass spectrometry (GC/MS).” http://www.epa.gov/solidwaste/hazard/testmethods/sw846/pdfs/8095.pdf. (Recuperado el 26 de julio de 2015).
W. Schade, R. Orghici, M. Mordmüller, and U. Willer, Detection of explosives. U.S.A.: Wiley-VCH Verlag GmbH & Co. KGaA, 2012, pp. 195-196.
R. Varga, and P. Ulbrich, “Some experience with trace analysis of post-explosion residues.” Arms Technology, no. 3, 2004, p. 634.
E. B. Byall, “Detection and characterization of explosives and explosive residue: A review,” in 13th INTERPOL Forensic Science Symposium, 2001, pp. 100-106.
D. Royds, S. Lewis, and A. Taylor, “A case study in forensic chemistry: The Bali bombings,” Talanta, no. 67, 2005, pp. 262-268.
R. Garrido, “Uso de la espectrometría de movilidad iónica como técnica de vanguardia en los laboratorios analíticos de rutina”, Servicio de Publicaciones de la Universidad de Córdoba, Argentina, 2012, pp. 25-33.
C. L. Rhykerd, D. W. Hannum, D. W. Murray, and J. E. Parmeter, “Guide for the selection of commercial explosives detection systems for Law enforcement applications”, National Institute of Justice, U.S.A., 1999, pp. 10-20.
J. Miller, Estadística y quimiometría para Química Analítica, 4a ed. España: Pearson Education, 2002, pp. 125-126.
D. Skoog, F. Holler y A. Nieman, Principios de análisis instrumental, 5.a ed.. España: McGraw-Hill, 2003, pp. 103-104.
J. Thurman, Practical Bomb Scene Investigation. Canada: CRC Press, 2006, pp. 187-190.
P. R. Underhill and M. F. Bardon, “Modelling of thermal ignition of RDX/HTPB based PBXS”, Royal Millitary Coll of Canada, Canada, 1996, pp. 50-57.
R. Borusiewicz, G. Zadora, and J. Zieba-Palus, “Chemical analysis of post explosion samples obtained as a result of model field experiments,” Talanta, no. 116, 2013, pp. 630-636.
E. Stashenko y J. Martínez, “GC y GC-MS: configuración del equipo versus aplicaciones”, Scientia Chromatographica, n.o 2, 2010, pp. 49-50
Wada Laboratory Committee, “Identification criteria for qualitative assays incorporating column chromatography and mass spectrometry”, Wada Technical Document – TD2010IDCR, version number: 1.0, approved by: WADA Executive Committee, approval date: 8 May, 2010, effective date: 1 September, 2010.