Automatic diagnostic of Nosemiasis Infestation on honey bee using image processing

Main Article Content

Juan Pablo Prendas-Rojas
Geovanni Figueroa-Mata
Marianyela Ramírez-Montero
Rafael Ángel Calderón-Fallas
Melvin Ramírez-Bogantes
Carlos Manuel Travieso-González

Abstract

Bees pollinate a wide variety of plant species, including agricultural crops. It is estimated that about 30% of the food consumed by the world population is derived from crops pollinated by bees.Nosemiasis infestation is one of the leading causes of bee hive loss worldwide. The laboratory methods for the diagnosis of the level of infestation by this microsporidium are slow, expensive and require the presence of an expert for spore count. It is proposed the creation of an automatic, reliable and economical system of quantification of Nosema infestation from digital image processing.

Using the techniques of image segmentation, object characterization and shape counting, the Cantwell and Hemocytometer techniques have been automatically reproduced. For the counting of spores, three descriptors were implemented: size, eccentricity and circularity, in such a way that they are invariant to the scale and rotation of the images. We worked with a total of 375 photographs grouped in folders of 5, which were previously labeled according to the level of infestation (very mild, mild, moderate, semi-strong and strong). The correct diagnosis rate was 84%.

Article Details

How to Cite
Prendas-Rojas, J. P., Figueroa-Mata, G., Ramírez-Montero, M., Calderón-Fallas, R. Ángel, Ramírez-Bogantes, M., & Travieso-González, C. M. (2018). Automatic diagnostic of Nosemiasis Infestation on honey bee using image processing. Tecnología En Marcha Journal, 31(2), 14–25. https://doi.org/10.18845/tm.v31i2.3621
Section
Artículo científico
Author Biographies

Juan Pablo Prendas-Rojas

Licenciado en Enseñanza de la Matemática. Escuela de Matemática, Instituto Tecnológico de Costa Rica.

Geovanni Figueroa-Mata

Máster en Computación. Escuela de Matemática, Instituto Tecnológico de Costa Rica.

Marianyela Ramírez-Montero

Licenciada. Programa Integrado de Patología Apícola, Centro de Investigaciones Apícolas Tropicales, Universidad Nacional, Costa Rica.

Rafael Ángel Calderón-Fallas

Doctor en Patología Apícola. Programa Integrado de Patología Apícola, Centro de Investigaciones Apícolas Tropicales, Universidad Nacional, Costa Rica.

Melvin Ramírez-Bogantes

Licenciado en Enseñanza de la Matemática. Escuela de Matemática, Instituto Tecnológico de Costa Rica.

Carlos Manuel Travieso-González

Doctor en Cibernética y Telecomunicaciones. Universidad de Las Palmas de Gran Canaria, España.