Maintenance decision making model based on useful life prediction for wind power generation systems components installed in Costa Rica
Main Article Content
Abstract
This study covers a maintenance decision making model, where condition monitoring is applied to rotating components of horizontal axis wind power generation systems installed in Costa Rica, in order to reduce the incidence of unexpected failures, which are consequences of the run-to-failure policy or following strictly the manufacturers’ suggestions without considering the operational environment, very common practices in the national wind industry.
Aiming the optimization of operation and maintenance costs, a model where two failure probability threshold values are defined is presented. These threshold values allow the component replacement decision making. Moreover, the initial guidelines for executing this strategy in a wind farm are offered in this paper.
The life percentage predictions required by the offered model, are obtained using artificial neural networks for each component (rotor, main bearing, gearbox and electric generator), which use representative condition monitoring variables as inputs.
Article Details
Los autores conservan los derechos de autor y ceden a la revista el derecho de la primera publicación y pueda editarlo, reproducirlo, distribuirlo, exhibirlo y comunicarlo en el país y en el extranjero mediante medios impresos y electrónicos. Asimismo, asumen el compromiso sobre cualquier litigio o reclamación relacionada con derechos de propiedad intelectual, exonerando de responsabilidad a la Editorial Tecnológica de Costa Rica. Además, se establece que los autores pueden realizar otros acuerdos contractuales independientes y adicionales para la distribución no exclusiva de la versión del artículo publicado en esta revista (p. ej., incluirlo en un repositorio institucional o publicarlo en un libro) siempre que indiquen claramente que el trabajo se publicó por primera vez en esta revista.