Experiences in the Application of a Multivariate Method for Imputation of Meteorological Data
Main Article Content
Abstract
Different statistical methods and techniques have been proposed for dealing with missing data. This study discusses the application of the principal components approach for filling hourly meteorological data. In order to test the possibilities that this approach offers, preliminary tests were conducted by random removal of real data in time series. Missing data were predicted using a principal-components algorithm. The results show that this method could predict the missing information with an mean absolute error that is around 1ºC in most of the cases.
Article Details
Los autores conservan los derechos de autor y ceden a la revista el derecho de la primera publicación y pueda editarlo, reproducirlo, distribuirlo, exhibirlo y comunicarlo en el país y en el extranjero mediante medios impresos y electrónicos. Asimismo, asumen el compromiso sobre cualquier litigio o reclamación relacionada con derechos de propiedad intelectual, exonerando de responsabilidad a la Editorial Tecnológica de Costa Rica. Además, se establece que los autores pueden realizar otros acuerdos contractuales independientes y adicionales para la distribución no exclusiva de la versión del artículo publicado en esta revista (p. ej., incluirlo en un repositorio institucional o publicarlo en un libro) siempre que indiquen claramente que el trabajo se publicó por primera vez en esta revista.