Propulsión bidireccional de nadadores de remo flexible

Contenido principal del artículo

Luis Felipe Córdoba-Ramírez

Resumen

La capacidad de controlar micronadadores en el régimen de bajo números de Reynolds puede permitir el acceso a regiones del cuerpo previamente inalcanzables para aplicaciones biomédicas como la administración de fármacos dirigidos y la microcirugía. Los nadadores de remos flexibles pueden generar propulsión mediante la oscilación de estructuras elásticas pasivas. Sin embargo, la bidireccionalidad no se ha demostrado previamente de forma experimental con nadadores de remo flexible. La incapacidad de moverse hacia atrás limita la capacidad de navegación de los micronadadores de remo flexible, especialmente en entornos altamente confinados en los que girar es difícil o inviable. En este estudio, demostramos experimentalmente que la propulsión bidireccional de los nadadores de remos flexibles puede introducirse incorporando un perfil intrínsecamente curvado que se acciona transversalmente en un extremo del nadador. Demostramos que los nadadores intrínsecamente curvados son capaces de una propulsión bidireccional positiva, negativa y dependiente de la frecuencia, lo que podría utilizarse en entornos muy confinados en los que el giro es difícil o inviable. En última instancia, con la capacidad de lograr la propulsión bidireccional, prevemos que el robot intrínsecamente curvado puede realizar una nueva clase de micronadador que puede abordar una amplia gama de necesidades clínicas no satisfechas.

Detalles del artículo

Cómo citar
Córdoba-Ramírez, L. F. (2025). Propulsión bidireccional de nadadores de remo flexible. Revista Tecnología En Marcha, 39(1), Pág. 29–40. https://doi.org/10.18845/tm.v39i1.7872
Sección
Artículo científico

Citas

[1] T. Qiu, T. C. Lee, A. G. Mark, K. I. Morozov, R. Münster, O. Mierka, S. Turek, A. M. Leshansky, and P. Fischer, “Swimming by reciprocal motion at low Reynolds number,” Nat. Commun., vol. 5, 2014.

[2] M. Jabbarzadeh, “Hydrodynamic interactions and motion of bacteria at low Reynolds number,” Ph.D. dissertation, Dept. Math., Univ. of Utah, Salt Lake City, UT, USA, 2018.

[3] J. Edd, S. Payen, B. Rubinsky, M. L. Stoller, and M. Sitti, “Biomimetic propulsion mechanism for a swimming surgical micro-robot,” in Proc. IEEE/RSJ Int. Conf. Intell. Robot. Syst. (IROS), vol. 3, pp. 2583–2588, 2003.

[4] V. Magdanz et al., “IRON Sperm: Sperm-templated soft magnetic microrobots,” Sci. Adv., vol. 6, no. 28, 2020.

[5] A. V. Singh et al., “Sperm cell driven microrobots—Emerging opportunities and challenges for biologically inspired robotic design,” Micromachines, vol. 11, no. 4, 2020.

[6] G. Kósa et al., “Flagellar swimming for medical micro robots: Theory, experiments and application,” in Proc. IEEE/RAS-EMBS Int. Conf. Biomed. Robot. Biomechatronics (BioRob), pp. 258–263, 2008.

[7] R. Mhanna et al., “Artificial bacterial flagella for remote-controlled targeted single-cell drug delivery,” Small, vol. 10, no. 10, pp. 1953–1957, 2014.

[8] I. S. M. Khalil et al., “Magnetic control of potential microrobotic drug delivery systems: Nanoparticles, magnetotactic bacteria and self-propelled microjets,” in Proc. Annu. Int. Conf. IEEE Eng. Med. Biol. Soc. (EMBS), pp. 5299–5302, 2013.

[9] K. T. Nguyen et al., “A magnetically guided self-rolled microrobot for targeted drug delivery, real-time X-ray imaging, and microrobot retrieval,” Adv. Healthc. Mater., vol. 10, no. 6, 2021.

[10] S. Fusco et al., “Shape-switching microrobots for medical applications: The influence of shape in drug delivery and locomotion,” ACS Appl. Mater. Interfaces, vol. 7, no. 12, pp. 6803–6811, 2015.

[11] D. Jang, J. Jeong, H. Song, and S. K. Chung, “Targeted drug delivery technology using untethered microrobots: A review,” J. Micromech. Microeng., vol. 29, no. 5, 2019.

[12] G. Chatzipirpiridis et al., “Electroforming of implantable tubular magnetic microrobots for wireless ophthalmologic applications,” Adv. Healthc. Mater., vol. 4, no. 2, pp. 209–214, 2015.

[13] F. Ullrich et al., “Mobility experiments with microrobots for minimally invasive intraocular surgery,” Invest. Ophthalmol. Vis. Sci., vol. 54, no. 5, pp. 2853–2863, 2013.

[14] Z. Ren et al., “Soft-bodied adaptive multimodal locomotion strategies in fluid-filled confined spaces,” Sci. Adv., vol. 7, no. 24, 2021.

[15] H. W. Huang et al., “Adaptive locomotion of artificial microswimmers,” Sci. Adv., vol. 5, no. 1, 2019.

[16] J. Lighthill, “Flagellar hydrodynamics,” SIAM Rev., vol. 18, no. 2, pp. 161–230, 1976.

[17] E. M. Purcell, “Life at low Reynolds number,” Am. J. Phys., vol. 45, no. 1, pp. 3–11, 1977.

[18] S. Mohanty et al., “Bidirectional propulsion of arc-shaped microswimmers driven by precessing magnetic fields,” Adv. Intell. Syst., vol. 2, no. 7, 2000064, 2020.

[19] Z. Liu, F. Qin, and L. Zhu, “Actuating a curved elastic filament for bidirectional propulsion,” Phys. Rev. Fluids, vol. 5, no. 5, 2020.

[20] C. H. Wiggins and R. E. Goldstein, “Flexive and propulsive dynamics of elastica at low Reynolds number,” Phys. Rev. Lett., vol. 80, no. 17, pp. 3879–3882, 1998.

[21] E. Lauga, “Floppy swimming: Viscous locomotion of actuated elastica,” Phys. Rev. E, vol. 75, no. 4, 2007.

[22] T. S. Singh, P. Singh, and R. D. S. Yadava, “Effect of interfilament hydrodynamic interaction on swimming performance of two-filament microswimmers,” Soft Matter, vol. 14, no. 19, pp. 7748–7757, 2018.

[23] W. H. Zurek, “Sub-Planck structure in phase space and its relevance for quantum decoherence,” New J. Phys., vol. 2, no. 10, 2000.

[24] Z. Peng, G. J. Elfring, and O. S. Pak, “Maximizing propulsive thrust of a driven filament at low Reynolds number via variable flexibility,” Soft Matter, vol. 13, no. 12, pp. 2339–2346, 2017.

[25] Z. Liu, F. Qin, L. Zhu, R. Yang, and X. Luo, “Effects of the intrinsic curvature of elastic filaments on the propulsion of a flagellated microrobot,” Phys. Fluids, vol. 32, no. 7, 2020.

[26] O. S. Pak and E. Lauga, “Theoretical models in low-Reynolds-number locomotion,” Soft Matter, vol. 10, no. 1, pp. 401–414, 2014.

[27] R. Dreyfus, J. Baudry, M. L. Roper, M. Fermigier, and H. A. Stone, “Microscopic artificial swimmers,” Nature, vol. 437, pp. 862–865, 2005.

[28] T. S. Yu, E. Lauga, and A. E. Hosoi, “Experimental investigations of elastic tail propulsion at low Reynolds number,” Phys. Fluids, vol. 18, no. 9, 2006.

[29] O. S. Pak and E. Lauga, “Generalized squirming motion of a sphere,” Journal of Engineering Mathematics, vol. 88, no. 1, pp. 1–28, 2014.

[30] M. Gazzola, M. Argentina, and L. Mahadevan, “Gait and speed selection in slender inertial swimmers,” Proceedings of the National Academy of Sciences of the United States of America (PNAS), vol. 111, no. 36, pp. 13695–13700, 2014.