La disfunción de la Autofagia en la enfermedad del Alzheimer: Bioquímica y futuro terapéutico

Contenido principal del artículo

Ariana Serrano-Monge
Daniel Álvarez-Brenes
Isaac Calderón-Blanco
Sofía Jiménez-Murillo
Raquel Montoya Mata

Resumen

La Enfermedad de Alzheimer (AD), la cual es la principal causa de demencia, está caracterizada por la acumulación de β-amiloide y ovillos neurofibrilares, que causan deterioro cognitivo. En América Latina y el Caribe, la AD representa entre el 50% y el 84% de los casos de demencia, con proyecciones que indican un aumento a 13.7 millones de casos para 2050. El proceso de la autofagia celular, un proceso vital que mantiene la homeostasis al degradar células dañadas, es esencial para la salud neuronal. La disfunción de la autofagia se relaciona con la acumulación de proteínas mal plegadas en la AD. A pesar de que la autofagia se activa inicialmente como respuesta protectora frente a β-amiloide, su acumulación bloquea la degradación lisosómica, lo que resulta en la formación de oligómeros neurotóxicos y placas amiloides, causando inflamación y daño neuronal. Alteraciones en proteínas clave como Beclin 1, PICALM y PSEN-1 agravan la acumulación de Aβ, afectando la producción de ATP y contribuyendo a la neurodegeneración. La eficacia de los tratamientos actuales sigue siendo objeto de debate en la comunidad científica debido a las limitaciones que estos presentan, incluyendo la dificultad de replicación de la enfermedad humana en modelos animales, la penetración insuficiente en el sistema nervioso central de los tratamientos y sus posibles efectos adversos. De esta forma, su futuro terapéutico se enfoca principalmente en ampliar los ensayos clínicos estudiando distintas rutas patológicas y enfocándose en biomarcadores para la detección temprana de la enfermedad.

Detalles del artículo

Cómo citar
Serrano-Monge, A., Álvarez-Brenes, D., Calderón-Blanco, I., Jiménez-Murillo, S., & Montoya-Mata, R. (2025). La disfunción de la Autofagia en la enfermedad del Alzheimer: Bioquímica y futuro terapéutico. Revista Tecnología En Marcha, 38(4), Pág. 54–65. https://doi.org/10.18845/tm.v38i4.7589
Sección
Artículo científico

Citas

[1] A. Litwiniuk, G. R. Juszczak, A. M. Stankiewicz, and K. Urbańska, “The role of glial autophagy in Alzheimer’s disease,” Molecular Psychiatry, vol. 28, no. 11, pp. 4528–4539, Sep. 2023, doi: https://doi.org/10.1038/s41380-023-02242-5

[2] Z. Zhang, X. Yang, Y. Q. Song, and J. Tu, “Autophagy in Alzheimer’s disease pathogenesis: Therapeutic potential and future perspectives,” Ageing research reviews, vol. 72, p. 101464, Dec. 2021, doi: https://doi.org/10.1016/j.arr.2021.101464

[3] A. Rahman, S. Rahman, H. Rahman, M. Rasheduzzaman, A. N. M Mamun-Or-Rashid, J. Uddin, R. Rahman, H. Hwang, M. G Pang, and H. Rhim, “Modulatory Effects of Autophagy on APP Processing as a Potential Treatment Target for Alzheimer’s Disease,” Biomedicines, vol. 9, no. 1, p. 5, 2021, doi: https://doi.org/10.3390/biomedicines9010005

[4] F. Lopera, N. Custodio, M. Rico-Restrepo, R. F. Allegri, J. D. Barrientos, E. García-Batres, I. L. Calandri, C. Calero-Moscoso, P. Caramelli, J. C. Duran-Quiroz, A. M. Jansen, A. J. Mimenza-Alvarado, R. Nitrini, J. F. Parodi, C. Ramos, A. Slachevsky, and S. M. Dozzi-Brucki, “A task force for diagnosis and treatment of people with Alzheimer ‘s disease in Latin America,” Frontiers in Neurology, vol. 14, Jul. 2023, doi: https://doi.org/10.3389/fneur.2023.1198869

[5] Pan American Health Organization, “Dementia in Latin America and the Caribbean: Prevalence, Incidence, Impact, and Trends over Time,” Washington, DC: PAHO. Accessed: Nov. 9, 2024. [Online]. Available: https://doi.org/10.37774/9789275126653

[6] K.Wiles, C. Wilson, J. M. Ramiro-Diaz, G. Kallifatidis, and S. Mukhopadhyay, “The Neuron,” in Anatomy and Physiology I: An Interactive Histology Atlas, 2024. [Online]. Available: https://pressbooks.pub/aandp1histologyatlasandworkbook/chapter/the-neuron/

[7] S. Tiwari, V. Atluri, A. Kaushik, A. Yndart, and M. Nair, “Alzheimer’s disease: pathogenesis, diagnostics, and therapeutics,” International Journal of Nanomedicine, vol. 14, pp. 5541-5554, Jul. 2019, doi: https://doi.org/10.2147/IJN.S200490

[8] D. Barragán-Martínez, M. A. García-Soldevilla, A. Parra-Santiago, and J. Tejeiro-Martínez, “Enfermedad de Alzheimer,” Medicine, vol. 12, no. 74, pp. 4338-4346, Mar. 2019, doi: https://doi.org/10.1016/j.med.2019.03.012

[9] Z. Breijyeh and R. Karaman, “Comprehensive Review on Alzheimer’s Disease: Causes and Treatment,” Molecules, vol. 25, no. 24, p. 5789, Dec. 2020, doi: https://doi.org/10.3390/molecules25245789

[10] S. Meftah and J. Gan, “Alzheimer’s disease as a synaptopathy: Evidence for dysfunction of synapses during disease progression,” Frontiers in Synaptic Neuroscience, vol. 15, p. 1129036, Mar. 2023, doi: https://doi.org/10.3389/fnsyn.2023.1129036

[11] M. Wu, M. Zhang, X. Yin, K. Chen, Z. Hu, Q. Zhou, X. Cao, Z. Chen, and D. Liu, “The role of pathological tau in synaptic dysfunction in Alzheimer’s diseases,” Translational Neurodegeneration, vol. 10, no. 45, Nov. 2021, doi: https://doi.org/10.1186/s40035-021-00270-1

[12] X. Pang, X. Zhang, Y. Jiang, Q. Su, Q. Li, and Z. Li, “Autophagy: Mechanisms and Therapeutic Potential of Flavonoids in Cancer,” Biomolecules, vol. 11, no. 2, p. 135, Jan. 2021, doi: https://doi.org/10.3390/biom11020135

[13] A. S. Gross and M. Graef, “Mechanisms of Autophagy in Metabolic Stress Response,” Journal of Molecular Biology, vol. 432, no. 1, pp. 28–52, Jan. 2020, doi: https://doi.org/10.1016/j.jmb.2019.09.005

[14] N. Peker and D. Gozuacik, “Autophagy as a Cellular Stress Response Mechanism in the Nervous System,” Journal of Molecular Biology, vol. 432, no. 8, pp. 2560–2588, Apr. 2020, doi: https://doi.org/10.1016/j.jmb.2020.01.017

[15] H. Morishita and N. Mizushima, “Diverse Cellular Roles of Autophagy,” Annual Review of Cell and Developmental Biology, vol. 35, no. 1, pp. 453–475, Oct. 2019, doi: https://doi.org/10.1146/annurev-cellbio-100818-125300

[16] H. Feng, N. Wang, N. Zhang, and H. Liao, “Alternative autophagy: mechanisms and roles in different diseases,” Cell Commun Signal, vol. 20, no. 1, p. 43, Dec. 2022, doi: https://doi.org/10.1186/s12964-022-00851-1

[17] Y. Li, Z. Hong, and R. Sheng, “The Multiple Roles of Autophagy in Neural Function and Diseases,” Neuroscience Bullet, vol. 40, pp. 363-382, Oct. 2023, doi: https://doi.org/10.1007/s12264-023-01120-y

[18] N. H. Ali, H. M. Al-kuraishy, A. I. Al-Gareeb, S. A. Alnaaim, A. Alexiou, M. Papadakis, H. M. Saad, and G. E. Batiha, “Autophagy and autophagy signaling in Epilepsy: possible role of autophagy activator,” Molecular Medicine, vol. 29, no. 142, Oct. 2023, doi: https://doi.org/10.1186/s10020-023-00742-2

[19] A. Fassio, A. Falace, A. Esposito, D. Aprile, R. Guerrini, and F. Benfenati, “Emerging Role of the Autophagy/Lysosomal Degradative Pathway in Neurodevelopmental Disorders With Epilepsy,” Frontiers in Cellular Neuroscience, vol. 14, Mar. 2020, doi: https://doi.org/10.3389/fncel.2020.00039

[20] D. R. Hernández-Espinosa, V. Barrera-Morín, O. Briz-Tena, E. A. González-Herrera, K. D. Laguna-Maldonado, A. S. Jardínez-Díaz, M. Sánchez-Olivares, and D. Matuz-Mares, “El papel de las especies reactivas de oxígeno y nitrógeno en algunas enfermedades neurodegenerativas,” Revista de la Facultad de Medicina, vol. 62, no. 3, pp. 6-19, May 2019, doi: https://doi.org/10.22201/fm.24484865e.2019.62.3.03

[21] J. Poejo, J. Salazar, A. M. Mata, and C. Gutierrez-Merino, “The relevance of amyloid Β-Calmodulin complexation in neurons and brain degeneration in Alzheimer’s disease,” International Journal of Molecular Sciences, vol. 22, no. 9, p. 4976, May 2021, doi: https://doi.org/10.3390/ijms22094976

[22] M. Hasegawa, “Structure of NFT: Biochemical Approach,” Advances in Experimental Medicine and Biology, vol. 1184, pp. 23–34, Jan. 2019, doi: https://doi.org/10.1007/978-981-32-9358-8_2

[23] V. Cecarini et al., “Neuroprotective effects of p62(SQSTM1)-engineered lactic acid bacteria in Alzheimer’s disease: a pre-clinical study,” Aging, vol. 12, no. 16, pp. 15995–16020, Aug. 2020, doi: https://doi.org/10.18632/aging.103900

[24] K. Ando et al., “Picalm reduction exacerbates tau pathology in a murine tauopathy model,” Acta Neuropathologica, vol. 139, no. 4, pp. 773–789, Jan. 2020, doi: https://doi.org/10.1007/s00401-020-02125-x

[25] S. Raut, R. Patel, and A. J. Al-Ahmad, “Presence of a mutation in PSEN1 or PSEN2 gene is associated with an impaired brain endothelial cell phenotype in vitro,” Fluids and Barriers of the CNS, vol. 18, no. 1, p. 3, Jan. 2021, doi: https://doi.org/10.1186/s12987-020-00235-y

[26] A. Álvarez-Castillo, J. M. Rodríguez-Alfaro, and A. Salas-Boza, “Influencia de la enfermedad de Alzheimer en los sistemas de neurotransmisión sináptica,” Revista Médica Sinergia, vol. 5, no. 4, p. e442, Apr. 2020, doi: https://doi.org/10.31434/rms.v5i4.442

[27] D. Rapaka, V. R. Bitra, S. R. Challa, and P. C. Adiukwu, “mTOR signaling as a molecular target for the alleviation of Alzheimer’s disease pathogenesis,” Neurochemistry International, vol. 155, p. 105311, Feb. 2022, doi: https://doi.org/10.1016/j.neuint.2022.105311

[28] H. Querfurth and H. K. Lee, “Mammalian/mechanistic target of rapamycin (mTOR) complexes in neurodegeneration,” Molecular Neurodegeneration, vol. 16, no. 1, Jul. 2021, doi: https://doi.org/10.1186/s13024-021-00428-5

[29] D. Agarwal, R. Kumari, A. Ilyas, S. Tyagi, R. Kumar, and N. K. Poddar, “Crosstalk between epigenetics and mTOR as a gateway to new insights in pathophysiology and treatment of Alzheimer’s disease,” International Journal Of Biological Macromolecules, vol. 192, pp. 895-903, Dec. 2021, doi: https://doi.org/10.1016/j.ijbiomac.2021.10.026

[30] M. Castellazzi et al., “Autophagy and mitophagy biomarkers are reduced in sera of patients with Alzheimer’s disease and mild cognitive impairment,” Scientific Reports, vol. 9, no. 1, p. 20009, Dec. 2019, doi: https://doi.org/10.1038/s41598-019-56614-5

[31] Q. Cai and D. Ganesan, “Regulation of neuronal autophagy and the implications in neurodegenerative diseases,” Neurobiology Of Disease, vol. 162, p. 105582, Jan. 2022, doi: https://doi.org/10.1016/j.nbd.2021.105582

[32] N. Rodríguez-Espinosa, M. G. Colaço-Harmand, and M. A. Moro-Miguel, “Uso de antipsicóticos en los pacientes con demencia en España: comparación con la prescripción de los inhibidores de la acetilcolinesterasa y de la memantina, y análisis de las asociaciones,” Revista Española de Geriatría y Gerontología, vol. 59, no. 2, p. 101446, Mar. 2024, doi: https://doi.org/10.1016/j.regg.2023.101446

[33] J. Cummings, A. M. L. Osse, D. Cammann, J. Powell, and J. Chen, “Anti-Amyloid Monoclonal Antibodies for the Treatment of Alzheimer’s Disease,” BioDrugs, vol. 38, no. 1, pp. 5-22, Nov. 2023, doi: https://doi.org/10.1007/s40259-023-00633-2

[34] I. Tanida, T. Ueno, and E. Kominami, “LC3 and Autophagy,” Methods in molecular biology, vol. 445, pp. 77-88, 2008, doi: https://doi.org/10.1007/978-1-59745-157-4_4

[35] Promega Corporation, “Autophagy Detection | LC3 Conversion assay,” Worldwide Promega. Accessed: Nov. 10, 2024. [Online]. Available: https://worldwide.promega.com/es-es/products/cell-health-assays/autophagy/

[36] T. K. S. Ng, C. S. H. Ho, W. W. S. Tam, E. H. Kua, and R. C. Ho, “Decreased Serum Brain-Derived Neurotrophic Factor (BDNF) Levels in Patients with Alzheimer’s Disease (AD): A Systematic Review and Meta-Analysis,” International Journal Of Molecular Sciences, vol. 20, no. 2, p. 257, Jan. 2019, doi: https://doi.org/10.3390/ijms20020257

[37] S. Arora, T. Kanekiyo, and J. Singh, “Functionalized nanoparticles for brain targeted BDNF gene therapy to rescue Alzheimer’s disease pathology in transgenic mouse model,” International Journal Of Biological Macromolecules, vol. 208, pp. 901-911, May 2022, doi: https://doi.org/10.1016/j.ijbiomac.2022.03.203

[38] M. S. Pádua, J. L. Guil-Guerrero, J. A. M. Prates, and P. A. Lopes, “Insights on the Use of Transgenic Mice Models in Alzheimer’s Disease Research,” International Journal Of Molecular Sciences, vol. 25, no. 5, p. 2805, Feb. 2024, doi: https://doi.org/10.3390/ijms25052805

[39] M. H. Kung, Y. S. Lin, and T. H. Chang, “Aichi virus 3C protease modulates LC3- and SQSTM1/p62-involved antiviral response,” Theranostics, vol. 10, no. 20, pp. 9200-9213, Jul. 2020, doi: https://doi.org/10.7150/thno.47077

[40] P. L. Xie, M. Y. Zheng, R. Han, W. X. Chen, and J. H. Mao, “Pharmacological mTOR inhibitors in ameliorating Alzheimer’s disease: current review and perspectives,” Frontiers In Pharmacology, vol. 15, p. 1366061, May 2024, doi: https://doi.org/10.3389/fphar.2024.1366061

[41] S. M. Fernandes, J. Mayer, P. Nilsson, and M. Shimozawa, “How close is autophagy-targeting therapy for Alzheimer’s disease to clinical use? A summary of autophagy modulators in clinical studies,” Frontiers In Cell And Developmental Biology, vol. 12, Jan. 2025, doi: https://doi.org/10.3389/fcell.2024.1520949

[42] A. Rahman et al., “Aducanumab for the treatment of Alzheimer’s disease: a systematic review,” Psychogeriatrics, vol. 23, no. 3, pp. 512-522, Feb. 2023, doi: https://doi.org/10.1111/psyg.12944

[43] Z. M. Hein et al., “Autophagy and Alzheimer’s Disease: Mechanisms and Impact Beyond the Brain,” Cells, vol. 14, no. 12, p. 911, Jun. 2025, doi: https://doi.org/10.3390/cells14120911

[44] Y. Hara, N. McKeehan, and H. M. Fillit, “Translating the biology of aging into novel therapeutics for Alzheimer disease,” Neurology, vol. 92, no. 2, pp. 84–93, Jan. 2019, doi: https://doi.org/10.1212/WNL.0000000000006745