Propiedades mecánicas de microfilamentos de policaprolactona para ser usados en ingeniería de tejidos

Contenido principal del artículo

Laura Rojas-Rojas
Teodolíto Guillén-Girón

Resumen

Es posible replicar la configuración biológica y mecánica de los músculos esqueléticos fabricando andamios poliméricos en forma de microfilamentos. En esta investigación se fabricaron microfilamentos utilizando gránulos de policaprolactona (PCL) mediante el proceso de extrusión y un sistema de arrastre sin utilizar disolventes en la fabricación. Se investigaron las propiedades mecánicas de los microfilamentos mediante la aplicación de cargas monotónicas y dinámicas. Las cargas se aplicaron utilizando un adaptador de agarre personalizado que mantenía los microfilamentos agrupados y paralelos entre sí. Entre los resultados se encontró que el método de fabricación utilizado fue adecuado para producir un microfilamento homogéneo de 90 ± 3 μm de diámetro. Además, los ensayos monotónicos mostraron que el grupo de microfilamentos tenían una elasticidad de E = 1863 ± 590 MPa, y un límite de fluencia de σy = 242 ± 45 MPa. Los resultados dinámicos mostraron que los microfilamentos de PCL resistieron cargas periódicas durante 5.3 × 105 ciclos, reteniendo 55% de deformación en este número de ciclos. El microfilamento fabricado tiene el potencial de ser utilizado como un andamio polimérico biomimético adecuado para la estimulación mecánica debido a su excelente comportamiento mecánico durante la carga dinámica.

Detalles del artículo

Cómo citar
Rojas-Rojas, L., & Guillén-Girón, T. (2023). Propiedades mecánicas de microfilamentos de policaprolactona para ser usados en ingeniería de tejidos . Revista Tecnología En Marcha, 36(2), Pág. 99–108. https://doi.org/10.18845/tm.v36i2.6154
Sección
Artículo científico

Citas

Alexeev, D., Goedecke, N., Snedeker, J., & Ferguson, S. (2020). Mechanical evaluation of electrospun poly(ε-caprolactone) single fibers. Mater. Today Commun., 24(April), 101211. https://doi.org/10.1016/j.mtcomm.2020.101211

An, J., Chua, C. K., Leong, K. F., Chen, C. H., & Chen, J. P. (2012). Solvent-free fabrication of three dimensionally aligned polycaprolactone microfibers for engineering of anisotropic tissues. Biomed. Microdevices, 14(5), 863–872. https://doi.org/10.1007/s10544-012-9666-3

Baji, A., Mai, Y. W., Wong, S. C., Abtahi, M., & Chen, P. (2010). Electrospinning of polymer nanofibers: Effects on oriented morphology, structures and tensile properties. Compos. Sci. Technol., 70(5), 703–718. https://doi.org/10.1016/j.compscitech.2010.01.010

Brennan, D. A., Conte, A. A., Kanski, G., Turkula, S., Hu, X., Kleiner, M. T., & Beachley, V. (2018). Mechanical Considerations for Electrospun Nanofibers in Tendon and Ligament Repair. Adv. Healthcare Mater., 7(12), 1–31. https://doi.org/10.1002/adhm.201701277

Capel, A. J., Rimington, R. P., Fleming, J. W., Player, D. J., Baker, L. A., Turner, M. C., … Lewis, M. P. (2019). Scalable 3D printed molds for human tissue engineered skeletal muscle. Front. Bioeng. Biotechnol., 7(Feb), 1–13. https://doi.org/10.3389/fbioe.2019.00020

Cipitria, A., Skelton, A., Dargaville, T. R., Dalton, P. D., & Hutmacher, D. W. (2011). Design, fabrication and characterization of PCL electrospun scaffolds - A review. J. Mater. Chem., 21(26), 9419–9453. https://doi.org/10.1039/c0jm04502k

Croisier, F., Duwez, A. S., Jérôme, C., Léonard, A. F., Van Der Werf, K. O., Dijkstra, P. J., & Bennink, M. L. (2012). Mechanical testing of electrospun PCL fibers. Acta Biomater., 8(1), 218–224. https://doi.org/10.1016/j.actbio.2011.08.015

Dhandayuthapani, B., Yoshida, Y., Maekawa, T., & Kumar, D. S. (2011). Polymeric scaffolds in tissue engineering application: A review. Int. J. Polym. Sci., 2011(ii). https://doi.org/10.1155/2011/290602

Fernández, J., Auzmendi, O., Amestoy, H., Diez-Torre, A., & Sarasua, J. R. (2017). Mechanical properties and fatigue analysis on poly(ε-caprolactone)-polydopamine-coated nanofibers and poly(ε-caprolactone)-carbon nanotube composite scaffolds. Eur. Polym. J., 94(February), 208–221. https://doi.org/10.1016/j.eurpolymj.2017.07.013

Ghobeira, R., Asadian, M., Vercruysse, C., Declercq, H., De Geyter, N., & Morent, R. (2018). Wide-ranging diameter scale of random and highly aligned PCL fibers electrospun using controlled working parameters. Polym., 157(May), 19–31. https://doi.org/10.1016/j.polymer.2018.10.022

Górecka, Ż., Idaszek, J., Kołbuk, D., Choińska, E., Chlanda, A., & Święszkowski, W. (2020). The effect of diameter of fibre on formation of hydrogen bonds and mechanical properties of 3D-printed PCL. Mater. Sci. Eng. C, 114, 111072. https://doi.org/10.1016/j.msec.2020.111072

Heher, P., Maleiner, B., Prüller, J., Teuschl, A. H., Kollmitzer, J., Monforte, X., … Fuchs, C. (2015). A novel bioreactor for the generation of highly aligned 3D skeletal muscle-like constructs through orientation of fibrin via application of static strain. Acta Biomater., 24(June), 251–265. https://doi.org/10.1016/j.actbio.2015.06.033

Ibrahim, H.M. & Klingner, A., (2020). A review on electrospun polymeric nanofibers: Production parameters and potential applications. Polymer Testing, 90, Article 106647.

Jana, S., Levengood, S. K. L., & Zhang, M. (2016). Anisotropic Materials for Skeletal-Muscle-Tissue Engineering. Adv. Mater., 28(48), 10588–10612. https://doi.org/10.1002/adma.201600240

Kim, B., & Mooney, D. J. (2000). Scaffolds for Engineering Smooth. Scanning, 122(June), 210–215.

Kim, W. J., Kim, M., & Kim, G. H. (2018). 3D-Printed Biomimetic Scaffold Simulating Microfibril Muscle Structure. Adv. Funct. Mater., 28(26), 1–12. https://doi.org/10.1002/adfm.201800405

Li, Y., & Wan, W. (2017). Exploring polymer nanofiber mechanics. IEEE Nanotechnol. Mag., 11(September), 16–28.

Moyle, L. A., Jacques, E., & Gilbert, P. M. (2020). Engineering the next generation of human skeletal muscle models: From cellular complexity to disease modeling. Curr. Opin. Biomed. Eng., 16, 9–18. https://doi.org/10.1016/j.cobme.2020.05.006

Ozbolat, I. T., & Hospodiuk, M. (2016). Current advances and future perspectives in extrusion-based bioprinting. Biomater., 76, 321–343. https://doi.org/10.1016/j.biomaterials.2015.10.076

Powell, C. A., Smiley, B. L., Mills, J., & Vandenburgh, H. H. (2002). Mechanical stimulation improves tissue-engineered human skeletal muscle. Am. J. Physiol. - Cell Physiol., 283(5), 1557–1565. https://doi.org/10.1152/ajpcell.00595.2001

Qazi, T. H., Mooney, D. J., Pumberger, M., Geißler, S., & Duda, G. N. (2015). Biomaterials based strategies for skeletal muscle tissue engineering: Existing technologies and future trends. Biomater., 53, 502–521. https://doi.org/10.1016/j.biomaterials.2015.02.110

Roberts, T. J. (2016). Contribution of elastic tissues to the mechanics and energetics of muscle function during movement. J. Exp. Biol., 219(2), 266–275. https://doi.org/10.1242/jeb.124446

Sardenberg, T., Müller, S. S., Silvares, P. R. de A., Mendonça, A. B., & Moraes, R. R. de L. (2003). Assessment of mechanical properties and dimensions of suture threads utilized in orthopedic surgeries. Acta Ortop. Bras., 11(2), 88–94. https://doi.org/10.1590/s1413-78522003000200004

Shanmugam, V., Johnson, D.J., Babu, K., Rajendran, S., Veerasimman, A., Marimuthu, U., Singh, S,. Das, O., Neisiany, R. E., Hedenqvist, M. S., Berto, F., & Ramakrishna. S. (2020) The mechanical testing and performance analysis of polymer-fibre composites prepared through the additive manufacturing. Polymer Testing., 93(October), 106925. https://doi.org/10.1016/j.polymertesting.2020.106925

Shearn, J. T., Juncosa-Melvin, N., Boivin, G. P., Galloway, M. T., Goodwin, W., Gooch, C., … Butler, D. L. (2007). Mechanical stimulation of tendon tissue engineered constructs: Effects on construct stiffness, repair biomechanics, and their correlation. J. Biomech. Eng., 129(6), 848–854. https://doi.org/10.1115/1.2800769

Subbiah, T., Bhat, G. S., Tock, R. W., Parameswaran, S., & Ramkumar, S. S. (2005). Electrospinning of nanofibers. J. Appl. Polym. Sci., 96(2), 557–569. https://doi.org/10.1002/app.21481

Sun, H., Mei, L., Song, C., Cui, X., & Wang, P. (2006). The in vivo degradation, absorption and excretion of PCL-based implant. Biomater., 27(9), 1735–1740. https://doi.org/10.1016/j.biomaterials.2005.09.019

Tan, E. P. S., Ng, S. Y., & Lim, C. T. (2005). Tensile testing of a single ultrafine polymeric fiber. Biomater., 26(13), 1453–1456. https://doi.org/10.1016/j.biomaterials.2004.05.021

USP_NF24. (2015). National Formulary, United States Pharmacopeial Convention (p. Rockville, MD). p. Rockville, MD.

Visco, A., Scolaro, C., Giamporcaro, A., De Caro, S., Tranquillo, E., & Catauro, M. (2019). Threads made with blended biopolymers: Mechanical, physical and biological features. Polym., 11(5). https://doi.org/10.3390/polym11050901

Von Fraunhofer, J., Storey, R., Stone, I., & Masterson, B. (1985). Tensile strength of suture materials. J. Biomed. Mater. Res., 19(5), 595–600. https://doi.org/10.1088/0950-7671/28/4/309

Wang, J., Khodabukus, A., Rao, L., Vandusen, K., Abutaleb, N., & Bursac, N. (2019). Engineered skeletal muscles for disease modeling and drug discovery. Biomater., 221(August), 119416. https://doi.org/10.1016/j.biomaterials.2019.119416

Wragg, N. M., Player, D. J., Martin, N. R. W., Liu, Y., & Lewis, M. P. (2019). Development of tissue-engineered skeletal muscle manufacturing variables. Biotechnol. Bioeng., 116(9), 2364–2376. https://doi.org/10.1002/bit.27074