Optimización de las condiciones de crecimiento de la bacteria endófita Klebsiella oxytoca en matraz y en biorreactor

Contenido principal del artículo

Alexander Schmidt-Durán
Randall Chacón-Cerdas

Resumen

Las bacterias endófitas son aquellas que viven en el interior de las células o los tejidos de plantas superiores sin causar daño. Klebsiella oxytoca es una bacteria endófita promotora del crecimiento vegetal y con efecto biocontrolador, razón por la cual, el objetivo del presente estudio fue determinar las condiciones óptimas de crecimiento de esta bacteria, en matraz y en biorreactor, obtenida de plantas de higo (Ficus carica) en estudios anteriores. Para esto, se evaluó el crecimiento de la biomasa de K. oxytoca en caldo nutritivo bajo diferentes condiciones de agitación y temperatura en matraz, determinando que las condiciones a 200 rpm y 30 °C fueron las que produjeron una mayor biomasa. Posteriormente, utilizando medio caldo nutritivo en el biorreactor de 3,7 L, se determinó que una agitación de 500 rpm presenta valores de KLa más altos y tiempos de fermentación menores que si se trabaja a 750 rpm. Además, bajo una agitación de 500 rpm, se determinó que medios basados en residuos agroindustriales pueden funcionar como fuentes de crecimiento alternativas para este microorganismo. Por último, el tratamiento de caldo nutritivo a 500 rpm fue modelado mediante el modelo logístico y la ecuación de Pirt, obteniendo, en ambos casos, coeficientes de determinación superiores a 0,95. 

Detalles del artículo

Cómo citar
Schmidt-Durán, A., & Chacón-Cerdas, R. (2021). Optimización de las condiciones de crecimiento de la bacteria endófita Klebsiella oxytoca en matraz y en biorreactor. Revista Tecnología En Marcha, 34(4), Pág. 92–104. https://doi.org/10.18845/tm.v34i4.5385
Sección
Artículo científico

Citas

A. Perez, J. Rojas, y J. Fuentes, “Diversidad de bacterias endófitas asociadas a raíces del pasto colosuana (Bothriochloa pertusa) en tres localidades del departamento de sucre, Colombia,” Acta Biológica Colombiana, vol. 15, no. 2, pp. 219-228, 2010.

I. Afzal, Z. K. Shinwari, S. Sikandar, y S. Shahzad, “Plant beneficial endophytic bacteria: Mechanisms, diversity, host range and genetic determinants,” Microbiological Research, vol. 221, pp. 36-49, 2019.

G. Santoyo, G. Moreno-Hagelsieb, M. D. C. Orozco-Mosqueda, y B. R. Glick, “Plant growth-promoting bacterial endophytes,” Microbiological Research, vol. 183, pp. 92-99, 2016.

A. Perez, y L. Chamorro, “Bacterias endófitas: una alternativa biológica para el control de Burkholderia glumae en el cultivo del arroz en Colombia,” Revista Colombiana de Ciencia Animal, vol. 4, no. 1, pp. 172-184, 2012.

H. Zhang, Q. Zhang, S. Chen, Z. Zhang, J. Song, Z. Long, Y. Yu, y H. Fang, “Enterobacteriaceae predominate in the endophytic microbiome and contribute to the resistome of strawberry,” Science of The Total Environment, vol. 727, pp. 1-9, 2020.

M. Bind, y S. Nema, “Isolation and Molecular Characterization of Endophytic Bacteria from Pigeon Pea Along with Antimicrobial Evaluation against Fusarium udum,” Appl Microbiol Open Access, vol. 5, no. 163, pp. 1-12, 2019.

A. Sánchez-Bautista, C. de León-García, S. Aranda-Ocampo, E. Zavaleta-Mejía, y C. Nava-Díaz, “Bacterias endófitas de la raíz en líneas de maíces tolerantes y susceptibles a sequía,” Revista Mexicana de Fitopatología, pp. 35-55, 2017.

L. Singh, M. Cariappa, y M. Kaur, “Klebsiella oxytoca: An emerging pathogen?,” Medical Journal Armed Forces India, vol. 72, pp. 1-3, 2016.

M. D. Alcántar-Curiel, D. Blackburn, Z. Saldaña, C. Gayosso-Vázquez, N. Iovine, M. A. de la Cruz, y J. A. Girón, “Multi-functional analysis of Klebsiella pneumoniae fimbriae types in adherence and biofilm formation,” Virulence, vol. 4, no. 2, pp. 129-138, 2013.

A. Ghasemian, A. Mobarez, S. Peerayeh, y A. B. Abadi, “The association of surface adhesin genes and the biofilm formation among Klebsiella oxytoca clinical isolates,” New Microbes and New Infections, vol. 27, pp. 36-39, 2019.

A. Nava, A. Ronquillo, A. Cabrera, D. Silva, K. Pérez, y C. García, “Klebsiella oxytoca: El futuro de la biorremediación,” Revista Materia, Ciencia y Nanociencia, vol. 2, no. 1, pp. 9-14, 2019.

D. Zhang, L. Lu, H. Zhao, M. Jin, T. Lü, y J. Lin, “Application of Klebsiella oxytoca Biomass in the Biosorptive Treatment of PAH-Bearing Wastewater: Effect of PAH Hydrophobicity and Implications for Prediction,” Water, vol. 10, no. 6, pp. 1-14, 2018.

N. H. Avcıoğlu, y I. S. Bilkay, “Cyanide Removal in Electroplating, Metal Plating and Gold Mining Industries’ Wastewaters by Using Klebsiella pneumoniae and Klebsiella oxytoca Species” vol. 78, no. 1, pp. 5-10, 2019.

M. C. Ifediegwu, K. C. Agu, N.S. Awah, A. E. Mbachu, C. B. Okeke, C. G. Anaukwu, P. O. Uba, U.C. Ngenegbo, y C. M. Nwankwo, “Isolation, Growth and Identification of Chlorpyrifos Degrading Bacteria from Agricultural Soil in Anambra State, Nigeria,” Universal Journal of Microbiology Research, vol. 3, no. 4, pp. 46-52, 2015.

C. Liu, K. Yuan, R. P. Chen, M. J. Chen, y L. Yu, “Biodegradation kinetics of nitriles with easily degradable substrate by Klebsiella oxytoca GS-4-08,” International Biodeterioration & Biodegradation, vol. 118, pp. 95-101, 2017.

I. H. Aljundi, K. M. Khleifat, A. M. Khlaifat, A. M. Ibrahim, K. A. Tarawneh, y S. A. Tarawneh, “Biodegradation of 2-Chlorobenzoic Acid by Klebsiella oxytoca: Mathematical Modeling and Effect of Some Growth Conditions,” Industrial & Engineering Chemistry Research, vol. 49, no. 16, pp. 7159-7167, 2010.

A. Khalid, J. Arshad, S. Mahmood, I. Aziz, y M. Arshad, “Effect of Chromium Forms on the Biodegradation of Reactive Black-5 Azo Dye by Psychrobacter and Klebsiella species,” International Journal of Agriculture and Biology, vol. 17, no. 6, pp. 1260-1264, 2015.

K. Stylianou, E. Hapeshi, M. I. Vasquez, D. Fatta-Kassinos, y I. Vyrides, “Diclofenac biodegradation by newly isolated Klebsiella sp. KSC: Microbial intermediates and ecotoxicological assessment,” Journal of Environmental Chemical Engineering, vol. 6, no. 2, pp. 3242–3248, 2018.

A. Kingsly, D. Jothinathan, y W. R. Thilagaraj, “Degradation of oleic acid and simultaneous bioelectricity production by Klebsiella oxytoca ADR 13,” Energy Sources, Part A: Recovery, Utilization, and Environmental Effects, vol. 39, no. 9, pp. 874-882, 2017.

S. Bhatia, y K. Sharma, “Thermophilic desulfurization of dibenzothiophene and different petroleum oils by Klebsiella sp. 13T,” Environ Sci Pollut Res, vol. 19, pp. 3491-3497, 2012.

W. Meng, Y. Zhang, M. Cao, W. Zhang, C. Lü, C. Yang, C. Gao, P. Xu, y C. Ma, “Efficient 2,3-butanediol production from whey powder using metabolically engineered Klebsiella oxytoca,” Microbial Cell Factories, vol. 19, no. 162, 2020.

J. Huang, S. Zhu, L. Zhao, L. Chen, M. Du, C. Zhang, y S. T. Yang, “A novel β-galactosidase from Klebsiella oxytoca ZJUH1705 for efficient production of galacto-oligosaccharides from lactose,” Applied Microbiology and Biotechnology, vol. 104, no. 14, pp. 6161-6172, 2020.

N. Li, H. Chou, L. Yu, y Y. Xu, “Cadaverine production by heterologous expression of Klebsiella oxytoca lysine decarboxylase,” Biotechnology and Bioprocess Engineering, vol. 19, no. 6, pp. 965-972, 2014.

A. Pavlova, M. Leontieva, T. Smirnova, G. Kolomeitseva, A. Netrusov, y E. Tsavkelova, “Colonization strategy of the endophytic plant growth-promoting strains of Pseudomonas fluorescens and Klebsiella oxytoca on the seeds, seedlings and roots of the epiphytic orchid, Dendrobium nobile Lindl,” Journal of Applied Microbiology, vol. 123, no. 1, 217-232, 2017.

C. W. Buddhi, A. Kkiu, y Y. Min-Ho, “Isolation and characterization of phosphate solubilizing bacteria (Klebsiella oxytoca) with enhanced tolerance to environmental stress,” African Journal of Microbiology Research, vol. 8, no. 31, pp. 2970-2978, 2014.

F. Ibañez, Z. Machado, H. Soto, E. Segal, y H. Ramos, “Endophytic and rhizospheric enterobacteria isolated from sugar cane have different potentials for producing plant growth-promoting substances,” Plant Soil, vol. 353, pp. 409-417, 2012.

Y. Liu, Z. Shi, L. Yao, H. Yue, H. Li, y C. Li, “Effect of IAA produced by Klebsiella oxytoca Rs-5 on cotton growth under salt stress,” The Journal of General and Applied Microbiology, vol. 59, no. 1, pp. 59-65, 2013.

J. D. C. Martínez-Rodríguez, M. D. L. Mora-Amutio, L. A. Plascencia-Correa, E. Audelo-Regalado, F. R. Guardado, E. Hernández-Sánchez, Y. Peña-Ramírez, A. Escalante, M. Beltrán-García, y T. Ogura, “Cultivable endophytic bacteria from leaf bases of Agave tequilana and their role as plant growth promoters,” Brazilian Journal of Microbiology, vol. 45, no. 4, pp. 1333-1339, 2014.

H. S. Al-Hussini, A. Y. Al-Rawahi, A. A. Al-Marhoon, S. A. Al-Abri, I. H. Al-Mahmooli, A. M. Al-Sadi, y R. Velazhahan, “Biological control of damping-off of tomato caused by Pythium aphanidermatum by using native antagonistic rhizobacteria isolated from Omani soil,” Journal of Plant Pathology, vol 101, no. 2, pp. 315–322, 2018.

P. Durán, J. J. Acuña, M. A. Jorquera, R. Azcón, C. Paredes, Z. Rengel, Z. y M. D. Mora, “Endophytic bacteria from selenium-supplemented wheat plants could be useful for plant-growth promotion, biofortification and Gaeumannomyces graminis biocontrol in wheat production,” Biology and Fertility of Soils, vol. 50, no. 6, pp. 983-990, 2014.

C. Castro, A. Hernández, L. Alvarado, y D. Flores, “DNA Barcodes in Fig Cultivars (Ficuscarica L.) Using ITS Regions of Ribosomal DNA, the psbA-trnH Spacer and the matK Coding Sequence,” American Journal of Plant Science, vol. 6, pp. 95-102, 2015.

L. Alvarado-Marchena, A. Schmidt-Durán, C. Alvarado-Ulloa, R. Chacón-Cerdas, y D. Flores-Mora, “Molecular characterization of the endophytic bacteria found in the fig crops (Ficus carica var. Brown Turkey) in Costa Rica,” Journal of Agricultural and Biological Science, vol. 11, no. 7, pp. 290-297, 2016.

Minitab Inc, Versión 16, Estados Unidos, 2015.

Tico Lab S. A., “Determinación de Glucosa: Método de Trinder,” Tibás, San José, 2002.

A. Zaker, M. Pazouki, y M. Vossougi, “Development of kinetic model for xanthan production in a laboratory-scale batch fermentor,” Iran J Sci Technol Trans Sci, vol. 42, pp. 261-266, 2018.

H. Bachmann, F. J. Bruggeman, D. Molenaar, F. B. dos Santos, y B. Teusink, “Public goods and metabolic strategies,” Current Opinion in Microbiology, vol. 31, pp. 109-115, 2016.

S. J. Pirt, “The maintenance energy of bacteria in growing cultures,” Proc R Soc Lond Ser B Biol Sci, vol. 163, pp. 224-231, 1965.

A. Quesada, “Principios de Biotecnología Microbiana,” San José, Costa Rica, Editorial UCR, Pp: 60-82, 2013.

S. Brisse, F. Grimont, y P. Grimont, “The Genus Klebsiella”, en The Prokaryotes, Volume 6: Proteobacteria: Gamma Subclass, M. Dworkin, S. Falkow, E. Rosenberg, K. H. Schleifer, y E. Stackebrandt, eds, Springer, New York, Estados Unidos, pp. 159-196, 2006.

S. Cho, K. D. Kim, J. H. Ahn, J. Lee, S. W. Kim, y Y. Um, “Selective production of 2,3-butanediol and acetoin by Newly isolated bacterium Klebsiella oxytoca M1,” Appl Biochem Biotechnol, vol. 170, pp.1922-1933, 2013.

J. H. Cho, C. Rathnasingh, H. Song, B. W. Chung, H. J. Lee, y D. Seung, “Fermentation and evaluation of Klebsiella pneumoniae and K. oxytoca on the production of 2,3-butanediol,” Bioprocess Biosyst Eng, vol. 35, pp. 1081-1088, 2012.

M. L. Alvarado-Gutiérrez, N. Ruiz-Ordaz, J. Galíndez-Mayer, E. Curiel-Quesada, y F. Santoyo-Tepole, “Degradation kinetics of carbendazim by Klebsiella oxytoca, Flavobacterium johnsoniae, and Stenotrophomonas maltophilia strains,” Environmental Science and Pollution Research, vol. 27, pp. 28518–28526, 2020.

P. Tang, Y. Hseu, H. Chou, K. Huang, y S. Chen, “Proteomic analysis of the effect of cyanide on Klebsiella oxytoca,” Curr microbial, vol. 60, pp. 224-228, 2010.

X. J. Ji, H. Huang, J. Du, J. G. Zhu, L. J. Ren, N. Hu, y S. Li, “Enhanced 2,3-butanediol production by Klebsiella oxytoca using a two-stage agitation speed control strategy,” Bioresource Technology, vol. 100, pp. 3410-3414, 2009.

S. Cho, T. Kim, H. M. Woo, Y. Kim, J. Lee, y Y. Um, “High production of 2,3-butanediol from biodiesel-derived crude glycerol by metabolically engineered Klebsiella oxytoca M1,” Biotechnol Biofuels, vol. 8, no. 146, pp. 1-12, 2015.

G. Buitrago, A. M. Otálvaro, y P. G. Duarte, “Evaluación de la transferencia de oxígeno en un biorreactor convencional con aireador externo,” Rev Colomb Biotecnol, vol. 15, no. 2, pp. 106-114, 2013.

N. González, J. Zamora, L. Ramos, E. Pérez, C. Pérez, y E. Salazar, “Transferencia y consumo de oxígeno en el cultivo de alta densidad del microorganismo con actividad bionematicida Tsukamurella paurometabola, C924,” Revista Tecnología Química Edición Especial, pp. 162-168, 2009.

L. Montoya-Pérez, y E. Durán-Herrera, “Producción de hidrógeno a partir de la fermentación de residuos agroindustriales de la piña,” Tecnología en Marcha, vol. 30, no.3, pp. 106-118, 2017.

J. Concha, A. Guevara, y M. Araujo, “Obtención de polvo de papaya de monte (Carica pubescens) por atomización,” Revista Ingeniería UC, vol. 9, no. 1, 2002.