Aislamiento de la región promotora del gen FaPAL2 de Fragaria x ananassa Cv. “Camino Real” y evaluación de su funcionalidad en respuesta a la irradiación UV-C

Contenido principal del artículo

Stephannie Masís-Ramos
Jesús Alonso Garduño-Hernández
Edmundo Lozoy- Gloria
Giovanni Garro-Monge

Resumen

La proteína fenilalanina amonio-liasa o PAL es una enzima clave en la ruta de síntesis de los flavonoides; en fresa se han reportado 6 genes que la codifican, entre ellos el FaPAL2. Los flavonoides son metabolitos secundarios que participan en la protección contra luz UV de las plantas, además, son de gran interés farmacéutico debido a las propiedades antioxidantes, antibacterianas, antiinflamatorias, antimutagénicas y anticancerígenas que poseen. Se ha correlacionado el aumento de flavonoides en fresas irradiadas con luz UV-C con altos niveles de expresión del gen FaPAL. Para poder estudiar y controlar la expresión de genes de interés es indispensable conocer la funcionalidad de los promotores, por lo que la presente investigación se planteó por objetivo identificar y aislar el promotor del gen FaPAL2 mediante la técnica TAIL PCR, para posteriormente evaluar su actividad ante respuesta a la luz UV-C en frutos de Fragaria x ananassa cv. “Camino Real” vía Agrobacterium tumefaciens utilizando el gen reportero GUS. Se consiguió aislar y secuenciar el promotor del gen FaPAL2, para después generar un constructo genético y evaluar su expresión genética transitoria en frutos agroinfiltrados de fresa. Se identificó una tinción histológica positiva de los frutos agroinfiltrados, tanto irradiados como no irradiados, lo que indica que el promotor del gen FaPAL2 actúa positivamente en respuesta a luz UV-C, pero no de manera exclusiva.

Detalles del artículo

Cómo citar
Masís-Ramos, S., Garduño-Hernández, J. A., Lozoy- Gloria, E., & Garro-Monge, G. (2021). Aislamiento de la región promotora del gen FaPAL2 de Fragaria x ananassa Cv. “Camino Real” y evaluación de su funcionalidad en respuesta a la irradiación UV-C. Revista Tecnología En Marcha, 34(4), Pág. 105–117. https://doi.org/10.18845/tm.v34i4.5207
Sección
Artículo científico

Citas

Angulo, R. (2009). Fresa Fragaria x ananassa. Colombia, Bogotá: Bayer CropScience.

Secretaría de Agricultura, Ganadería, Desarrollo Rural, Pesca y Alimentación. (2017). Planeación agrícola nacional 2017-2030 de la fresa mexicana. Recuperado de https://www.gob.mx/cms/uploads/attachment/file/257075/Potencial-Fresa.pdf

Bianchi, P. G. (2018). Guía completa del cultivo de las fresas. Ciudad de México, México: De Vecchi.

Baldi, P., Orsucci, S., Moser, M., Brilli, M., Giongo, L., & Si-Ammour, A. (2018). Gene expression and metabolite accumulation during strawberry (Fragaria x ananassa) fruit development and ripening. Planta, 248(5), 1143-1157.

Nowicka, A., Kucharska, A. Z., Sokół-Łętowska, A., & Fecka, I. (2019). Comparison of polyphenol content and antioxidant capacity of strawberry fruit from 90 cultivars of Fragaria x ananassa Duch. Food chemistry, 270, 32-46.

Suryawanshi, S. (2019). Chemistry and Health benefits to humans of Some Flavonoids: An Overview. Current pharma research, 9(2), 2799-2804.

Panche, A. N., Diwan, A. D., & Chandra, S. R. (2016). Flavonoids: an overview. Journal of nutritional science, 5.

Li, X., Zhang, L., Ahammed, G. J., Li, Z. X., Wei, J. P., Shen, C., & Han, W. Y. (2017). Nitric oxide mediates brassinosteroid-induced flavonoid biosynthesis in Camellia sinensis L. Journal of plant physiology, 214, 145-151.

Pombo, M. A., Martínez, G. A., & Civello, P. M. (2011). Cloning of FaPAL6 gene from strawberry fruit and characterization of its expression and enzymatic activity in two cultivars with different anthocyanin accumulation. Plant science, 181(2), 111-118.

Martínez-Zavala, S. A. (2018). Respuesta molecular del fruto de la fresa (Fragaria x ananassa Dutch cv. Camino Real) ante la iluminación con luz UV-C. Tesis de Maestría en Ciencias en Biotecnología de Plantas, CINVESTAV-IPN Unidad Irapuato, México.

Liu, Y. G., & Whittier, R. F. (1995). Thermal asymmetric interlaced PCR: automatable amplification and sequencing of insert end fragments from P1 and YAC clones for chromosome walking. Genomics, 25(3), 674-681.

Terauchi, R., & Kahl, G. (2000). Rapid isolation of promoter sequences by TAIL-PCR: the 5′-flanking regions of PAL and PGI genes from yams (Dioscorea). Molecular and general genetics MGG, 263(3), 554-560.

Thanh, T., Chi, V. T. Q., Abdullah, M. P., Omar, H., & Napis, S. (2012). Efficiency of ligation-mediated PCR and TAIL-PCR methods for isolation of RbcS promoter sequences from green microalga Ankistrodesmus convolutus. Molecular biology, 46(1), 58-64.

Díaz, A. S., Rentería, L. F., Cortez, J. A., & Palacios, E. S. (2008). PCR: reacción en cadena de la polimerasa. Herramientas moleculares aplicadas en ecología: aspectos teóricos y prácticos.

Naleway, J.J. (1992). Histochemical, spectrophotometric, and fluorometric GUS substrate, pp. 61-76. In: GUS Protocols: Using the GUS Gene as a Reporter of Gen Expression. California, USA: Academic Press Inc.

Chi, G., Goh, H. L., Hoo, K., & Legavre, T. (1998). GUS gene expression in Anthurium andreanum, Oncidium Gower Ramsey and Brassolaeliocattleya Orange Glory Empress after particle bombardment. In International Symposium on Biotechnology of Tropical and Subtropical Species Part 2, 461, 379.

Martínez, L. (2016). Replication-Competent Reporter-Expressing Viruses. Basel, Switzerland: MDPI

Spolaore, S., Trainotti, L., & Casadoro, G. (2001). A simple protocol for transient gene expression in ripe fleshy fruit mediated by Agrobacterium. Journal of experimental botany, 52(357), 845-850.

Zhao, Y., Mao, W., Chen, Y., Wang, W., Dai, Z., Dou, Z., & Liu, T. (2019). Optimization and standardization of transient expression assays for gene functional analyses in strawberry fruits. Horticulture research, 6(1), 1-13.

Garduño, A. (2020). Evaluación de la funcionalidad de la región promotora del gen de FaPAL6 de Fragaria x ananassa en respuesta a luz UV-C (Tesis de maestría). Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Irapuato, México.

Chattopadhyay, S., Puente, P., Deng, X. W., & Wei, N. (1998). Combinatorial interaction of light‐responsive elements plays a critical role in determining the response characteristics of light‐regulated promoters in Arabidopsis. The plant journal, 15(1), 69-77.

Terzaghi, W. B., & Cashmore, A. R. (1995). Light-regulated transcription. Annual review of plant biology, 46(1), 445-474.

Da Costa e Silva, O., Klein, L., Schmelzer, E., Trezzini, G. F., & Hahlbrock, K. (1993). BPF‐1, a pathogen‐induced DNA‐binding protein involved in the plant defense response. The plant journal, 4(1), 125-135.

Logemann, E., Parniske, M., & Hahlbrock, K. (1995). Modes of expression and common structural features of the complete phenylalanine ammonia-lyase gene family in parsley. Proceedings of the national academy of sciences, 92(13), 5905-5909.

Maeda, K., Kimura, S., Demura, T., Takeda, J., & Ozeki, Y. (2005). DcMYB1 acts as a transcriptional activator of the carrot phenylalanine ammonia-lyase gene (DcPAL1) in response to elicitor treatment, UV-B irradiation and the dilution effect. Plant molecular biology, 59(5), 739.

Hudson, M. E., & Quail, P. H. (2003). Identification of promoter motifs involved in the network of phytochrome A-regulated gene expression by combined analysis of genomic sequence and microarray data. Plant physiology, 133(4), 1605-1616.

Jiao, Y., Ma, L., Strickland, E., & Deng, X. W. (2005). Conservation and divergence of light-regulated genome expression patterns during seedling development in rice and Arabidopsis. The plant cell, 17(12), 3239-3256.

Irisarri, P., Zhebentyayeva, T., Errea, P., & Pina, A. (2016). Differential expression of phenylalanine ammonia lyase (PAL) genes implies distinct roles in development of graft incompatibility symptoms in Prunus. Scientia horticulturae, 204, 16-24.

Surjadinata, B. B., Jacobo, D. A., & Cisneros, L. (2017). UVA, UVB and UVC light enhances the biosynthesis of phenolic antioxidants in fresh-cut carrot through a synergistic effect with wounding. Molecules, 22(4), 668.

De Mesa, M. C., Santiago, N., Pliego, F., Quesada, M. A., & Mercado, J. A. (2004). The CaMV 35S promoter is highly active on floral organs and pollen of transgenic strawberry plants. Plant cell reports, 23(1-2), 32-38.

Artículos más leídos del mismo autor/a

1 2 3 > >>