Estudio exploratorio para la minería electroquímica de magnesio en salmueras marinas de Abangares
Contenido principal del artículo
Resumen
En el distrito de Colorado de Abangares en Guanacaste, Costa Rica, hay una producción importante de sal y gran parte de ella se realiza mediante secado al sol. Además del producto principal que es el cloruro de sodio, se pueden extraer otros sub-productos a partir de las salmueras concentradas por precipitación electroquímica. Para explorar esta opción, se toman muestras de las salmueras de algunas salineras locales. Estas salmueras tienen valores muy elevados de salinidad en el ámbito entre (100-340) PSU y de pH entre (8-15), son ricas en magnesio, pobres en calcio y tienen un contenido de litio muy bajo como para poder explotarse comercialmente. El producto principal de la precipitación electroquímica de las salmueras es el hidróxido de magnesio Mg(OH)2, con un costo de producción estimado de unos 0,036 USD por gramo para la electrólisis propuesta en este estudio.
Detalles del artículo

Esta obra está bajo una licencia internacional Creative Commons Atribución-NoComercial-SinDerivadas 4.0.
Los autores conservan los derechos de autor y ceden a la revista el derecho de la primera publicación y pueda editarlo, reproducirlo, distribuirlo, exhibirlo y comunicarlo en el país y en el extranjero mediante medios impresos y electrónicos. Asimismo, asumen el compromiso sobre cualquier litigio o reclamación relacionada con derechos de propiedad intelectual, exonerando de responsabilidad a la Editorial Tecnológica de Costa Rica. Además, se establece que los autores pueden realizar otros acuerdos contractuales independientes y adicionales para la distribución no exclusiva de la versión del artículo publicado en esta revista (p. ej., incluirlo en un repositorio institucional o publicarlo en un libro) siempre que indiquen claramente que el trabajo se publicó por primera vez en esta revista.
Citas
[1] A. Valverde-Espinoza, La ciudad de Puntarenas: Una aproximación a su historia económica y social 1858-1930, 1st ed. Universidad de Costa Rica, Sede del Pacífico, 2008.
[2] EUsalt, “Harvesting salt by solar evaporation.” Accessed: Oct. 06, 2025. [Online]. Available: https://eusalt.com/about-salt/salt-production/solar-evaporation
[3] G. Feng, N. Zuo-ren, W. Zhi-hong, G. Xian-zheng, and Z. Tie-yong, “Assessing environmental impact of magnesium production using Pidgeon process in China,” Transactions of Nonferrous Metals Society of China, no. 18, pp. 749–754, 2008.
[4] M. S. Diallo, M. R. Kotte, and M. Cho, “Mining Critical Metals and Elements from Seawater: Opportunities and Challenges,” Environ Sci Technol, vol. 49, no. 16, pp. 9390–9399, Apr. 2015, doi: 10.1021/acs.est.5b00463.
[5] D. Fontana, F. Forte, M. Pietrantonio, S. Pucciarmati, and C. Marcoaldi, “Magnesium recovery from seawater desalination brines: a technical review,” Dec. 01, 2023, Springer Science and Business Media B.V. doi: 10.1007/s10668-022-02663-2.
[6] L. F. Berrio-Betancur et al., “Desarrollo de la industria de aleaciones de magnesio en Colombia - una oportunidad,” DYNA (Colombia), vol. 84, no. 203, pp. 55–64, Dec. 2017, doi: 10.15446/dyna.v84n203.66440.
[7] E. L. Bray, “2018 Minerals Yearbook MAGNESIUM,” 2021. Accessed: Oct. 06, 2025. [Online]. Available: https://pubs.usgs.gov/myb/vol1/2018/myb1-2018-magnesium-metal.pdf
[8] US Department of Energy, “Critical Minerals and Materials,” 2018. Accessed: Oct. 26, 2025. [Online]. Available: https://www.energy.gov/sites/prod/files/2021/01/f82/DOE%20Critical%20Minerals%20and%20Materials%20Strategy_0.pdf
[9] T. Hoshino, “Innovative lithium recovery technique from seawater by using world-first dialysis with a lithium ionic superconductor,” Desalination, vol. 359, pp. 59–63, Mar. 2015, doi: 10.1016/j.desal.2014.12.018.
[10] B. S. Oh, S. G. Oh, Y. J. Jung, Y. Y. Hwang, J. W. Kang, and I. S. Kim, “Evaluation of a seawater electrolysis process considering formation of free chlorine and perchlorate,” Desalination Water Treat, vol. 18, no. 1–3, pp. 245–250, 2010, doi: 10.5004/dwt.2010.1780.
[11] C. Carré, A. Zanibellato, M. Jeannin, R. Sabot, P. Gunkel-Grillon, and A. Serres, “Electrochemical calcareous deposition in seawater. A review,” Jul. 01, 2020, Springer Science and Business Media Deutschland GmbH. doi: 10.1007/s10311-020-01002-z.
[12] B. S. Lalia and R. Hashaikeh, “Electrochemical precipitation to reduce waste brine salinity,” Desalination, vol. 498, Jan. 2021, doi: 10.1016/j.desal.2020.114796.
[13] N. Mahmud, D. V. F. Alvarez, M. H. Ibrahim, M. H. El-Naas, and D. V. Esposito, “Magnesium recovery from desalination reject brine as pretreatment for membraneless electrolysis,” Desalination, vol. 525, Mar. 2022, doi: 10.1016/j.desal.2021.115489.
[14] H. Xie et al., “Using electrochemical process to mineralize CO2 and separate Ca2+/Mg2+ ions from hard water to produce high value-added carbonates,” Environ Earth Sci, vol. 73, no. 11, pp. 6881–6890, Jun. 2015, doi: 10.1007/s12665-015-4401-z.
[15] Y. Sano, Y. Hao, and F. Kuwahara, “Development of an electrolysis based system to continuously recover magnesium from seawater,” Heliyon, vol. 4, p. e00923, 2018, doi: 10.1016/j.heliyon.2018.e00923.
[16] B. S. Lalia, A. Khalil, and R. Hashaikeh, “Selective electrochemical separation and recovery of calcium and magnesium from brine,” Sep Purif Technol, vol. 264, Jun. 2021, doi: 10.1016/j.seppur.2021.118416.
[17] C. Barchiche et al., “Characterization of calcareous deposits in artificial seawater by impedance techniques: 3 - Deposit of CaCO3 in the presence of Mg(II),” Electrochim Acta, vol. 48, no. 12, pp. 1645–1654, May 2003, doi: 10.1016/S0013-4686(03)00075-6.
[18] F. Souiad et al., “Electrodeposition of calcium carbonate and magnesium carbonate from hard water on stainless-steel electrode to prevent natural scaling phenomenon,” Water (Switzerland), vol. 13, no. 19, Oct. 2021, doi: 10.3390/w13192752.
[19] C. H. Díaz Nieto, J. A. Kortsarz, M. L. Vera, and V. Flexer, “Effect of temperature, current density and mass transport during the electrolytic removal of magnesium ions from lithium rich brines,” Desalination, vol. 529, May 2022, doi: 10.1016/j.desal.2022.115652.
[20] K. Zeppenfeld, “Electrochemical removal of calcium and magnesium ions from aqueous solutions,” Desalination, vol. 277, no. 1–3, pp. 99–105, Aug. 2011, doi: 10.1016/j.desal.2011.04.005.
[21] K. Akamine and I. Kashiki, “Corrosion Protection of Steel by Calcareous Electrodeposition in Seawater (Part 1)-Mechanism of Electrodeposition,” Zairyo-to-Kankyo, vol. 51, pp. 496–501, 2002.
[22] D. Nguyen Dang et al., “Role of Brucite Dissolution in Calcium Carbonate Precipitation from Artificial and Natural Seawaters,” Cryst Growth Des, vol. 17, no. 4, pp. 1502–1513, Apr. 2017, doi: 10.1021/acs.cgd.6b01305.
[23] M. Gómez Batista et al., “Determinación espectrofotométrica de pH en agua de mar utilizando indicador púrpura de meta-cresol purificado y un espectrofotómetro Ocean Optics. Red de Investigación de Estresores Marinos - Costeros en Latinoamérica y El Caribe – REMARCO,” Santa Marta, 2021. Accessed: Oct. 07, 2025. [Online]. Available: https://remarco.org/manual-ao/
[24] X. Li et al., “Purified meta-Cresol Purple dye perturbation: How it influences spectrophotometric pH measurements,” Mar Chem, vol. 225, p. 103849, 2020, doi: 10.1016/j.marchem.2020.103849.
[25] C. F. Berghoff, “Procedimiento de determinación espectrofotométrica del pH de agua de mar con púrpura de meta-cresol,” 2020. Accessed: Oct. 07, 2025. [Online]. Available: https://www.argentina.gob.ar/sites/default/files/2022/03/berghoff_informe_ases_transf_086_2020_protocolo_ph.pdf
[26] A. Ansari, A. Ali, M. Asif, and Shamsuzzaman, “Microwave-assisted MgO NP catalyzed one-pot multicomponent synthesis of polysubstituted steroidal pyridines,” New Journal of Chemistry, vol. 42, no. 1, pp. 184–197, 2018, doi: 10.1039/c7nj03742b.
[27] B. Daigle and S. Decarlo, “Office of Industries Magnesium Price Spike: A Flash in the Pan?,” 2021. Accessed: Oct. 26, 2025. [Online]. Available: https://www.usitc.gov/publications/332/working_papers/magnesium_wp_compliant_.pdf
[28] H. I. Lee et al., “The Structural Effect of Electrode Mesh on Hydrogen Evolution Reaction Performance for Alkaline Water Electrolysis,” Front Chem, vol. 9, Nov. 2021, doi: 10.3389/fchem.2021.787787.