Evaluación preliminar de un sistema biológico eucariota (Nicotiana tabacum) escalable para la producción de insulina humana recombinante

Contenido principal del artículo

Carolina Centeno-Cerdas
Alina Jiménez-Rojas
Fabián Echeverría-Beirute
Montserrat Jarquín-Cordero

Resumen

La diabetes mellitus es un problema de salud mundial cuyo tratamiento representa presión económica para los pacientes y los sistemas de salud pública. La producción de insulina, principal tratamiento de esta enfermedad es costosa y por ende se requieren métodos alternativos y económicos para aumentar su disponibilidad y efectividad para los pacientes. En este trabajo se emplearon plantas de tabaco (Nicotiana tabacum) como modelo biotecnológico para introducir genéticamente los genes requeridos para sintetizar y liberar insulina humana. Para ello, la secuencia codificante se clonó en casetes de expresión nuclear y plastidial para material vegetal y su correcta inserción se verificó mediante análisis de PCR del ADN genómico de los clones derivados. Además, se cuantificó la expresión y liberación de proteínas recombinantes mediante ELISA. La concentración alcanzó niveles promedio de 800pmol/L en los sobrenadantes de los derivados del constructo pAF_ins, lo que confirma la efectividad de la transformación plastidial. Para probar preliminarmente la bioactividad de la hormona, se evaluó su capacidad para inducir la fosforilación de su receptor en células HepG2. Los resultados mostraron un aumento en la fosforilación después de la estimulación tanto con insulina recombinante disponible comercialmente (control positivo), como con la molécula recombinante secretada por las plantas de tabaco. No se observó fosforilación al estimular las células con el medio de inanición (control negativo) o extractos de plantas silvestres. Los resultados muestran que N. tabacum es una plataforma viable y apropiada para la producción de insulina humana recombinante en su configuración funcional para aplicaciones terapéuticas.

Detalles del artículo

Cómo citar
Centeno-Cerdas, C., Jiménez-Rojas, A., Echeverría-Beirute, F., & Jarquín-Cordero, M. (2025). Evaluación preliminar de un sistema biológico eucariota (Nicotiana tabacum) escalable para la producción de insulina humana recombinante. Revista Tecnología En Marcha, 39(1), Pág. 56–73. https://doi.org/10.18845/tm.v39i1.7949
Sección
Artículo científico

Citas

[1] J. B. Cole and J. C. Florez, “Genetics of diabetes mellitus and diabetes complications,” (in eng), Nat Rev Nephrol, vol. 16, no. 7, pp. 377-390, Jul 2020. https://doi.org/10.1038/s41581-020-0278-5

[2] D. N. Koye, D. J. Magliano, R. G. Nelson, and M. E. Pavkov, “The Global Epidemiology of Diabetes and Kidney Disease,” (in eng), Adv Chronic Kidney Dis, vol. 25, no. 2, pp. 121-132, Mar 2018. doi:10.1053/j.ackd.2017.10.011

[3] Y. Y. Siew and W. Zhang, “Downstream processing of recombinant human insulin and its analogues production from E. coli inclusion bodies,” (in eng), Bioresour Bioprocess, vol. 8, no. 1, p. 65, 2021, doi: 10.1186/s40643-021-00419-w.

[4] International Diabetes Federation, “IDF Diabetes Atlas,” 10th ed, (in eng), Brussels, Belgium, Dec 2021, https://diabetesatlas.org/data/en/

[5] World Health Organization, “The WHO Global Diabetes Compact,” (in eng), Geneva, 2023, https://www.who.int/es/news-room/fact-sheets/detail/diabetes

[6] Ministerio de Salud de Costa Rica, “Alrededor de 20 personas han sido diagnnosticadas diariamente con diabetes mellitus en 2023,” (in spa), San José, Costa Rica, 2023, https://www.ministeriodesalud.go.cr/index.php/prensa/60-noticias-2023/1710-alrededor-de-20-personas-han-sido-diagnosticadas-diariamente-con-diabetes-mellitus-en-el-2023#:~:text=Martes%2014%20de%20noviembre%2C%202023,con%20esta%20enfermedad%20por%20d%C3%ADa.

[7] A. Chawla, R. Chawla, and S. Jaggi, “Microvasular and macrovascular complications in diabetes mellitus: Distinct or continuum?,” (in eng), Indian J Endocrinol Metab, vol. 20, no. 4, pp. 546-51, Jul-Aug 2016, doi: 10.4103/2230-8210.183480.

[8] A. A. Lam, A. Lepe, S. H. Wild, and C. Jackson, “Diabetes comorbidities in low- and middle-income countries: An umbrella review,” (in eng), J Glob Health, vol. 11, p. 04040, 2021, doi: 10.7189/jogh.11.04040.

[9] A. M. Y. Zhang, E. A. Wellberg, J. L. Kopp, and J. D. Johnson, “Hyperinsulinemia in Obesity, Inflammation, and Cancer,” (in eng), Diabetes Metab J, vol. 45, no. 3, pp. 285-311, May 2021, doi: 10.4093/dmj.2020.0250.

[10] D. Tomic, J. E. Shaw, and D. J. Magliano, “The burden and risks of emerging complications of diabetes mellitus,” (in eng), Nat Rev Endocrinol, vol. 18, no. 9, pp. 525-539, Sep 2022, doi: 10.1038/s41574-022-00690-7.

[11] N. A. ElSayed et al., “4. Comprehensive Medical Evaluation and Assessment of Comorbidities: Standards of Care in Diabetes-2023,” (in eng), Diabetes Care, vol. 46, no. Suppl 1, pp. S49-s67, Jan 1 2023, doi: 10.2337/dc23-S004.

[12] G. Akkus and M. Sert, “Diabetic foot ulcers: A devastating complication of diabetes mellitus continues non-stop in spite of new medical treatment modalities,” (in eng), World J Diabetes, vol. 13, no. 12, pp. 1106-1121, Dec 15 2022, doi: 10.4239/wjd.v13.i12.1106.

[13] G. Wilcox, “Insulin and insulin resistance,” (in eng), Clin Biochem Rev, vol. 26, no. 2, pp. 19-39, May 2005.

[14] A. Arunagiri et al., “Proinsulin misfolding is an early event in the progression to type 2 diabetes,” (in eng), Elife, vol. 8, Jun 11 2019, doi: 10.7554/eLife.44532.

[15] S. Y. Park, J. F. Gautier, and S. Chon, “Assessment of Insulin Secretion and Insulin Resistance in Human,” (in eng), Diabetes Metab J, vol. 45, no. 5, pp. 641-654, Sep 2021, doi: 10.4093/dmj.2021.0220.

[16] D. F. Steiner, S. Y. Park, J. Støy, L. H. Philipson, and G. I. Bell, “A brief perspective on insulin production,” (in eng), Diabetes Obes Metab, vol. 11 Suppl 4, pp. 189-96, Nov 2009, doi: 10.1111/j.1463-1326.2009.01106.x.

[17] B. E. Corkey, J. T. Deeney, and M. J. Merrins, “What Regulates Basal Insulin Secretion and Causes Hyperinsulinemia?,” (in eng), Diabetes, vol. 70, no. 10, pp. 2174-2182, Oct 2021, doi: 10.2337/dbi21-0009.

[18] Fortune Business Insights, “Human Insulin Market Size, Share & Industry Analysis, By Type (Analogue Insulin and Traditional Human Insulin), By Diabetes Type (Diabetes 1 and Diabetes 2), By Distribution Channel (Hospital Pharmacy and Retail & Online Pharmacy), and Regional Forecast, 2024-2032,” (in eng), Pune, India, Sep 8 2025, https://www.fortunebusinessinsights.com/industry-reports/human-insulin-market-100395

[19] N. A. Baeshen et al., “Cell factories for insulin production,” (in eng), Microb Cell Fact, vol. 13, p. 141, Oct 2 2014, doi: 10.1186/s12934-014-0141-0.

[20] A. D. Wright, C. H. Walsh, M. G. Fitzgerald, and J. M. Malins, “Very pure porcine insulin in clinical practice,” (in eng), Br Med J, vol. 1, no. 6155, pp. 25-7, Jan 6 1979, doi: 10.1136/bmj.1.6155.25.

[21] J. Alyas, “Human Insulin: History, Recent Advances, and Expression Systems for Mass Production.,” vol. 8, A. Rafiq, Amir, H., Khan, S., Sultana, T., Ali, A., Hameed, A., Ahmad, I., Kazmi, A., Sajid, T., & Ahmad, A., Ed., ed: Biomedical Research and Therapy, 2021, pp. 4540-4561. doi: 10.15419/bmrat.v8i9.692

[22] P. Hazra et al., “A novel peptide design aids in the expression and its simplified process of manufacturing of Insulin Glargine in Pichia pastoris,” (in eng), Appl Microbiol Biotechnol, vol. 105, no. 8, pp. 3061-3074, Apr 2021, doi: 10.1007/s00253-021-11224-y.

[23] J. Szewczak, A. Bierczyńska-Krzysik, M. Piejko, P. Mak, and D. Stadnik, “Isolation and Characterization of Acetylated Derivative of Recombinant Insulin Lispro Produced in Escherichia coli,” (in eng), Pharm Res, vol. 32, no. 7, pp. 2450-7, Jul 2015, doi: 10.1007/s11095-015-1637-y.

[24] H. G. Hwang et al., “Recombinant Glargine Insulin Production Process Using Escherichia coli,” (in eng), J Microbiol Biotechnol, vol. 26, no. 10, pp. 1781-1789, Oct 28 2016, doi: 10.4014/jmb.1602.02053.

[25] A. D. Riggs, “Making, Cloning, and the Expression of Human Insulin Genes in Bacteria: The Path to Humulin,” (in eng), Endocr Rev, vol. 42, no. 3, pp. 374-380, May 25 2021, doi: 10.1210/endrev/bnaa029.

[26] A. Beygmoradi, A. Homaei, R. Hemmati, and P. Fernandes, “Recombinant protein expression: Challenges in production and folding related matters,” (in eng), Int J Biol Macromol, vol. 233, p. 123407, Apr 1 2023, doi: 10.1016/j.ijbiomac.2023.123407.

[27] M. R. Davey, P. Anthony, J. B. Power, and K. C. Lowe, “Plant protoplasts: status and biotechnological perspectives,” (in eng), Biotechnol Adv, vol. 23, no. 2, pp. 131-71, Mar 2005, doi: 10.1016/j.biotechadv.2004.09.008.

[28] A. Berbec and T. Doroszewska, “The Use of Nicotiana Species in Tobacco Improvement.,” SpringerInternational Publishing, En N. V.Ivanov, N. Sierro, & M. C. Peitsch (Eds.), The Genome, pp. pp. 101-146, 2020, doi: 7/978-3-030-29493-9_8.

[29] N. Selwal et al., and phytoremediation capabilities of the tobacco plant: Advancements through genetic engineering and cultivation techniques,” Biocatalysis and Agricultural Biotechnology, vol. 52, 2023, doi: 10.1016/j.bcab.2023.102845.

[30] R. Tremblay, D. Wang, A. M. Jevnikar, and S. Ma, “Tobacco, a highly efficient green bioreactor for production of therapeutic proteins,” (in eng), Biotechnol Adv, vol. 28, no. 2, pp. 214-21, Mar-Apr 2010, doi: 10.1016/j.biotechadv.2009.11.008.

[31] A. L. Demain and P. Vaishnav, “Production of recombinant proteins by microbes and higher organisms,” (in eng), Biotechnol Adv, vol. 27, no. 3, pp. 297-306, May-Jun 2009, doi: 10.1016/j.biotechadv.2009.01.008.

[32] S. M. Rozov, A. A. Zagorskaya, Y. M. Konstantinov, and E. V. Deineko, “Three Parts of the Plant Genome: On the Way to Success in the Production of Recombinant Proteins,” (in eng), Plants (Basel), vol. 12, no. 1, Dec 21 2022, doi: 10.3390/plants12010038.

[33] R. Bock, “Engineering Chloroplasts for High-Level Constitutive or Inducible Transgene Expression,” (in eng), Methods Mol Biol, vol. 2317, pp. 77-94, 2021, doi: 10.1007/978-1-0716-1472-3_3.

[34] M. Naeem, R. Han, N. Ahmad, W. Zhao, and L. Zhao, “Tobacco as green bioreactor for therapeutic protein production: latest breakthroughs and optimization strategies.” Plant Growth Regulation, 103(2), 227-241. doi: 10.1007/s10725-023-01106-w

[35] S. Bhoria, J. Yadav, H. Yadav, D. Chaudhary, R. Jaiwal, and P. K. Jaiwal, “Current advances and future prospects in production of recombinant insulin and other proteins to treat diabetes mellitus,” (in eng), Biotechnol Lett, vol. 44, no. 5-6, pp. 643-669, Jun 2022, doi: 10.1007/s10529-022-03247-w.

[36] J. M. Hamilton, D. J. Simpson, S. C. Hyman, B. K. Ndimba, and A. R. Slabas, “Ara12 subtilisin-like protease from Arabidopsis thaliana: purification, substrate specificity and tissue localization,” (in eng), Biochem J, vol. 370, no. Pt 1, pp. 57-67, Feb 15 2003, doi: 10.1042/bj20021125.

[37] C. Navarre, B. De Muynck, G. Alves, D. Vertommen, B. Magy, and M. Boutry, “Identification, gene cloning and expression of serine proteases in the extracellular medium of Nicotiana tabacum cells,” (in eng), Plant Cell Rep, vol. 31, no. 10, pp. 1959-68, Oct 2012, doi: 10.1007/s00299-012-1308-y.

[38] D. C. Dixon, J. R. Cutt, and D. F. Klessig, “Differential targeting of the tobacco PR-1 pathogenesis-related proteins to the extracellular space and vacuoles of crystal idioblasts,” (in eng), Embo j, vol. 10, no. 6, pp. 1317-24, Jun 1991, doi: 10.1002/j.1460-2075.1991.tb07650.x.

[39] H. Daniell, “Transformation and foreign gene expression in plants by microprojectile bombardment,” (in eng), Methods Mol Biol, vol. 62, pp. 463-89, 1997, doi: 10.1385/0-89603-480-1:463.

[40] T. Murashige, “A revised medium for rapid growthand bio-assays with tobacco tissue cultures,” vol. 15, F. Skoog, Ed., ed: Physiol. Plant, 1962, pp. 473–497.

[41] S. Campos-Delgado, “Establecimiento de cultivos celulares de Nicotiana tabacum L. Proyecto estudiantil Instituto Tecnológico de Costa Rica.,” (in spa), Repositorio TEC, 2015, https://repositoriotec.tec.ac.cr/handle/2238/6417

[42] A. Sahoo, P. K. Das, V. V. Dasu, and S. Patra, “Insulin evolution: A holistic view of recombinant production advancements,” International Journal of Biological Macromolecules, vol. 277, p. 133951, 2024/10/01/ 2024, doi: 10.1016/j.ijbiomac.2024.133951.

[43] M. J. B. Burnett and A. C. Burnett, “ Therapeutic recombinant protein production in plants: Challenges and opportunities.# PLANTS, PEOPLE, PLANET, 2(2), 121-132. doi: 10.1002/ppp3.10073

[44] W. H. Brondyk, “Selecting an appropriate method for expressing a recombinant protein,” (in eng), Methods Enzymol, vol. 463, pp. 131-47, 2009, doi: 10.1016/s0076-6879(09)63011-1.

[45] C. H. Schein, “Production of Soluble Recombinant Proteins in Bacteria.”Bio/Technology, 7(11), 1141-1149. https://doi.org/10.1038/nbt1189-1141

[46] S. Schillberg, N. Raven, H. Spiegel, S. Rasche, and M. Buntru, “Critical Analysis of the Commercial Potential of Plants for the Production of Recombinant Proteins,” (in eng), Front Plant Sci, vol. 10, p. 720, 2019, doi: 10.3389/fpls.2019.00720.

[47] A. Jayakrishnan et al., “Evolving Paradigms of Recombinant Protein Production in Pharmaceutical Industry: A Rigorous Review.” Sci, 6(1), Article 1. doi: 10.3390/sci6010009

[48] M. Zieliński et al., “Expression and purification of recombinant human insulin from E. coli 20 strain,” (in eng), Protein Expr Purif, vol. 157, pp. 63-69, May 2019, doi: 10.1016/j.pep.2019.02.002.

[49] Y.-S. Chen, J. L. Zaro, D. Zhang, N. Huang, A. Simon, and W.-C. Shen, “Characterization and Oral Delivery of Proinsulin-Transferrin Fusion Protein Expressed Using ExpressTec,” International Journal of Molecular Sciences, vol. 19, no. 2, doi: 10.3390/ijms19020378.

[50] Z. Ling et al., “Transgenic Expression and Identification of Recombinant Human Proinsulin in Peanut,” Braz. arch. biol. technol., vol. 59, 2016, doi: 10.1590/1678-4324-2016150131.

[51] P. Maliga, T. Tungsuchat-Huang, and K. A. Lutz, “Transformation of the Plastid Genome in Tobacco: The Model System for Chloroplast Genome Engineering,” (in eng), Methods Mol Biol, vol. 2317, pp. 135-153, 2021, doi: 10.1007/978-1-0716-1472-3_6.

[52] D. Boyhan and H. Daniell, “Low-cost production of proinsulin in tobacco and lettuce chloroplasts for injectable or oral delivery of functional insulin and C-peptide,” (in eng), Plant Biotechnol J, vol. 9, no. 5, pp. 585-98, Jun 2011. doi: 10.1111/j.1467-7652.2010.00582.x

[53] N. Rajkumari, S. Alex, K. B. Soni, K. N. Anith, M. M. Viji, and A. G. Kiran, “Silver nanoparticles for biolistic transformation in Nicotiana tabacum L,” (in eng), 3 Biotech, vol. 11, no. 12, p. 497, Dec 2021.

[54] S. A. Olejniczak, E. Łojewska, T. Kowalczyk, and T. Sakowicz, “Chloroplasts: state of research and practical applications of plastome sequencing,” (in eng), Planta, vol. 244, no. 3, pp. 517-27, Sep 2016, doi: 10.1007/s00425-016-2551-1.

[55] Z. Duan et al., “Mechanisms of Endoplasmic Reticulum Protein Homeostasis in Plants,” (in eng), Int J Mol Sci, vol. 24, no. 24, Dec 18 2023, doi: 10.3390/ijms242417599.

[56] A. Fernández-San Millán et al., “Human papillomavirus L1 protein expressed in tobacco chloroplasts self-assembles into virus-like particles that are highly immunogenic,” in Plant Biotechnol J, vol. 6, no. 5). England, 2008, pp. 427-41. https://doi.org/10.1111/j.1467-7652.2008.00338.x

[57] I. Farran, I. McCarthy-Suárez, F. Río-Manterola, C. Mansilla, J. J. Lasarte, and A. M. Mingo-Castel, “The vaccine adjuvant extra domain A from fibronectin retains its proinflammatory properties when expressed in tobacco chloroplasts,” (in eng), Planta, vol. 231, no. 4, pp. 977-90, Mar 2010, doi: 10.1007/s00425-010-1102-4.

[58] P. Maliga, “Plastid transformation in higher plants,” (in eng), Annu Rev Plant Biol, vol. 55, pp. 289-313, 2004, doi: 10.1146/annurev.arplant.55.031903.141633.

[59] S. Schillberg, N. Raven, R. Fischer, R. M. Twyman, and A. Schiermeyer, “Molecular farming of pharmaceutical proteins using plant suspension cell and tissue cultures,” (in eng), Curr Pharm Des, vol. 19, no. 31, pp. 5531-42, 2013, doi: 10.2174/1381612811319310008.

[60] J. Denecke, J. Botterman, and R. Deblaere, “Protein secretion in plant cells can occur via a default pathway,” (in eng), Plant Cell, vol. 2, no. 1, pp. 51-9, Jan 1990, doi: 10.1105/tpc.2.1.51.

[61] A. Gnanasambandam and R. G. Birch, “Efficient developmental mis-targeting by the sporamin NTPP vacuolar signal to plastids in young leaves of sugarcane and Arabidopsis,” (in eng), Plant Cell Rep, vol. 23, no. 7, pp. 435-47, Dec 2004, doi: 10.1007/s00299-004-0860-5.

[62] Z. Svab and P. Maliga, “High-frequency plastid transformation in tobacco by selection for a chimeric aadA gene,” (in eng), Proc Natl Acad Sci U S A, vol. 90, no. 3, pp. 913-7, Feb 1 1993, doi: 10.1073/pnas.90.3.913.

[63] N. V. Romadanova, A. B. Tolegen, S. V. Kushnarenko, E. V. Zholdybayeva, and J. C. Bettoni, “Effect of Plant Preservative Mixture(TM) on Endophytic Bacteria Eradication from In Vitro-Grown Apple Shoots,” (in eng), Plants (Basel), vol. 11, no. 19, Oct 5 2022.

[64] P. Doran, “Foreign protein production in plant tissue cultures”(in eng), Current Opinion in Biotechnology, vol. 11, no. 2, pp. 199-204, Apr 11 2000, doi.org/10.1016/S0958-1669(00)00086-0.

[65] J. K. Bharathi, P. Suresh, M. A. Samy Prakash, S. Muneer, “Exploring recent progress of molecular farming for therapeutic and recombinant molecules in plant systems” (in eng), Heliyon, vol. 10, no. 18, pp. 199-204, Sep 2024, doi.org/10.1016/j.heliyon.2024.e37634.

[66] J. Pei, B. Wang, and D. Wang, “Current Studies on Molecular Mechanisms of Insulin Resistance,” (in eng), J Diabetes Res, vol. 2022, p. 1863429, 2022, doi: 10.1155/2022/1863429.

[67] X. Zhao, X. An, C. Yang, W. Sun, H. Ji, and F. Lian, “The crucial role and mechanism of insulin resistance in metabolic disease,” (in eng), Front Endocrinol (Lausanne), vol. 14, p. 1149239, 2023, doi: 10.3389/fendo.2023.1149239.

[68] C. R. Kahn and M. F. White, “The insulin receptor and the molecular mechanism of insulin action,” (in eng), J Clin Invest, vol. 82, no. 4, pp. 1151-6, Oct 1988. doi: 10.1172/JCI113711.

[69] Le, T. K. C., Dao, X. D., Nguyen, D. V., Luu, D. H., Bui, T. M. H., Le, T. H., Nguyen, H. T., Le, T. N., Hosaka, T., & Nguyen, T. T. T. (2023). Insulin signaling and its application. Frontiers in Endocrinology, 14. https://doi.org/10.3389/fendo.2023.1226655

[70] Peng, J., & He, L. (2018). IRS Posttranslational Modifications in Regulating Insulin Signaling. Journal of molecular endocrinology, 60(1), R1-R8. https://doi.org/10.1530/JME-17-0151

[71] Yunn, N.-O., Kim, J., Ryu, S. H., & Cho, Y. (2023). A stepwise activation model for the insulin receptor. Experimental & Molecular Medicine, 55(10), 2147-2161. https://doi.org/10.1038/s12276-023-01101-1

[72] Pei, J., Wang, B., & Wang, D. (2022). Current Studies on Molecular Mechanisms of Insulin Resistance. Journal of Diabetes Research, 2022, 1863429. https://doi.org/10.1155/2022/1863429

[73] Zhao, X., An, X., Yang, C., Sun, W., Ji, H., & Lian, F. (2023). The crucial role and mechanism of insulin resistance in metabolic disease. Frontiers in Endocrinology, 14, 1149239. https://doi.org/10.3389/fendo.2023.1149239

[74] Choi, E., & Bai, X. (2023). Activation mechanism of the insulin receptor: A structural perspective. Annual review of biochemistry, 92, 247-272. https://doi.org/10.1146/annurev-biochem-052521-033250