Diseño de un circuito de mitigación para mejorar la conmutación de MOSFETs en una configuración de medio puente H

Contenido principal del artículo

Giancarlo Alvarado-Rivera
Ana Rebeca Fonseca-Huapaya
Yeiner Arias-Esquivel

Resumen

Este trabajo aborda el diseño de un circuito para minimizar los efectos adversos en la conmutación de MOSFETs en un medio puente H. Los MOSFETs enfrentan problemas de eficiencia y estabilidad debido a capacitancias e inductancias parásitas. Para solucionar esto, se añadieron resistencias en gate-on y gate-off, así como un capacitor entre la puerta y la fuente. Estas modificaciones demostraron eficacia en simulaciones y pruebas experimentales, reduciendo perturbaciones y picos de tensión, y mejorando la estabilidad del sistema. La solución propuesta optimiza el rendimiento de los MOSFETs en aplicaciones de alta frecuencia y potencia, mejorando la eficiencia energética y reduciendo el estrés en los componentes.

Detalles del artículo

Cómo citar
Alvarado-Rivera, G., Fonseca-Huapaya, A. R., & Arias-Esquivel, Y. (2025). Diseño de un circuito de mitigación para mejorar la conmutación de MOSFETs en una configuración de medio puente H. Revista Tecnología En Marcha, 39(1), Pág. 149–159. https://doi.org/10.18845/tm.v39i1.7858
Sección
Artículo científico

Citas

[1] M. A. Perez, S. Ceballos, G. Konstantinou, J. Pou and R. P. Aguilera, “Modular Multilevel Converters: Recent Achievements and Challenges,” IEEE Open Journal of the Industrial Electronics Society, vol. 2, pp. 224-239, 2021, doi: 10.1109/OJIES.2021.3060791

[2] Y. Arias-Esquivel, R. Cárdenas, M. Urrutia, M. Díaz, L. Tarisciotti, y J. C. Clare, “Continuous Control Set Model Predictive Control of a Modular Multilevel Converter for Drive Applications,” IEEE Transactions on Industrial Electronics, vol. 70, no. 9, pp. 8723-8733, Sep. 2023, doi: 10.1109/TIE.2022.3210515.

[3] Priya, M., Ponnambalam, P. and Muralikumar, K, “Modular-multilevel converter topologies and applications – a review,” IET Power Electronics, vol. 12, pp. 170-183, Jan. 2019, doi: 10.1049/iet-pel.2018.5301

[4] F. Rodríguez, D. Garrido, R. Núñez, G. Oggier, y G. García, «Modelado dinámico y de estado estacionario para la conexión modular entrada serie - salida serie de convertidores con puentes duales activos», Rev. iberoam. autom. inform. ind., vol. 18, n.º 4, pp. 371–384, Sep. 2021, doi: 10.4995/riai.2021.14866.

[5] D. Murillo-Yarce, A. Alzate-Gomez, & A. Escobar-Mejía, “Análisis comparativo del control predictivo de corriente en convertidores vsi empleados en la conexión a red de energías renovables”, TecnoLógicas, vol. 21, no. 41, p. 45-62, 2018. doi: 10.22430/22565337.714

[6] R. Stark, A. Tsibizov, I. Kovacevic-Badstuebner, T. Ziemann and U. Grossner, “Gate Capacitance Characterization of Silicon Carbide and Silicon Power mosfets Revisited,” in IEEE Transactions on Power Electronics, vol. 37, no. 9, pp. 10572-10584, Sept. 2022, doi: 10.1109/TPEL.2022.3164360.

[7] U. Jadli, F. Mohd-Yasin, H. A. Moghadam, P. Pande, J. R. Nicholls and S. Dimitrijev, “Measurement of Power Dissipation Due to Parasitic Capacitances of Power MOSFETs,” in IEEE Access, vol. 8, pp. 187043-187051, 2020, doi: 10.1109/ACCESS.2020.3030269.

[8] D. Zięba and J. Rąbkowski, “Problems related to the correct determination of switching power losses in high-speed SiC MOSFET power modules,” Bulletin of the Polish Academy of Sciences Technical Sciences, p. 140695, Feb. 2022, doi: 10.24425/bpasts.2022.140695.

[9] A. Ong, J. Carr, J. Balda and A. Mantooth, “A Comparison of Silicon and Silicon Carbide MOSFET Switching Characteristics,” 2007 IEEE Region 5 Technical Conference, Fayetteville, AR, USA, 2007, pp. 273-277, doi: 10.1109/TPSD.2007.4380318.

[10] D. Cittanti, F. Iannuzzo, E. Hoene and K. Klein, “Role of parasitic capacitances in power MOSFET turn-on switching speed limits: A SiC case study,” 2017 IEEE Energy Conversion Congress and Exposition (ECCE), Cincinnati, OH, USA, 2017, pp. 1387-1394, doi: 10.1109/ECCE.2017.8095952.

[11] J. Boehmer, J. Schumann and H. -G. Eckel, “Effect of the miller-capacitance during switching transients of IGBT and MOSFET,” 2012 15th International Power Electronics and Motion Control Conference (EPE/PEMC), Novi Sad, Serbia, 2012, pp. LS6d.3-1-LS6d.3-5, doi: 10.1109/EPEPEMC.2012.6397498.

[12] A. Fratta, P. Guglielmi, E. Armando, S. Taraborrelli and G. Cristallo, “Commutation losses reduction in high voltage power MOSFETs by proper commutation circuit,” 2011 IEEE International Conference on Industrial Technology, Auburn, AL, USA, 2011, pp. 127-132, doi: 10.1109/ICIT.2011.5754359.

[13] N. Mohan, T. M. Undeland, and W. P. Robbins, Power Electronics: Converters, Applications, and Design. 1995.

[14] H. Peng, J. Chen, Z. Cheng, Y. Kang, J. Wu and X. Chu, “Accuracy-Enhanced Miller Capacitor Modeling and Switching Performance Prediction for Efficient SiC Design in High-Frequency X-Ray High-Voltage Generators,” in IEEE Journal of Emerging and Selected Topics in Power Electronics, vol. 8, no. 1, pp. 179-194, March 2020, doi: 10.1109/JESTPE.2019.2951743.

[15] Yuan, D.; Zhang, Y.; Wang, X. An Improved Analytical Model for Crosstalk of SiC MOSFET in a Bridge-Arm Configuration. Energies 2021, 14, 683, doi: 10.3390/en14030683.

[16] J. Tan and Z. Zhou, “An optimized switching strategy based on gate drivers with variable voltage to improve the switching performance of sic mosfet modules”, Energies, vol. 16, no. 16, p. 5984, 2023, doi: 10.3390/en16165984.