Disbiosis de la microbiota intestinal y el papel de su transmisión de persona-a-persona en el desarrollo de enfermedades no transmisibles

Contenido principal del artículo

Gloriana Chaves-Jiménez
Mauro Briceño-Chaves

Resumen

La microbiota intestinal desempeña un papel integral en la realización de los procesos de
digestión, además de tener profundas implicaciones para la salud. Su composición y su
impacto en el huésped dependen de diversos factores ambientales, tales como el tipo de
dieta que consume un individuo. La alteración del microbioma intestinal provoca su disbiosis.
Algunas enfermedades actualmente consideradas no transmisibles están relacionadas con la
microbiota intestinal disbiótica. En los últimos años ha habido un interés creciente en estudiar la
transmisión persona-a-persona de la microbiota intestinal y su papel en los efectos asociados
a la salud. En esta revisión, se proporciona una visión sobre estos temas; además, se propone
estudiar más a fondo los efectos de factores como la cohabitación y la dieta personal en la
velocidad de transmisión.

Detalles del artículo

Cómo citar
Chaves-Jiménez, G., & Briceño-Chaves, M. (2024). Disbiosis de la microbiota intestinal y el papel de su transmisión de persona-a-persona en el desarrollo de enfermedades no transmisibles. Revista Tecnología En Marcha, 37(9), Pág. 186–196. https://doi.org/10.18845/tm.v37i9.7623
Sección
Artículo científico

Citas

E. Rinninella et al., “What is the Healthy Gut Microbiota Composition? A Changing Ecosystem across Age,

Environment, Diet, and Diseases,” Microorganisms, vol. 7, no. 14, Jan. 2019, doi: 10.3390/microorganisms7010014.

E. Thursby and N. Juge, “Introduction to the human gut microbiota,” Biochemical Journal, vol. 474, no. 11, pp.

–1836, Jun. 2017, doi: 10.1042/BCJ20160510.

M. De Siena et al., “Gut and Reproductive Tract Microbiota Adaptation during Pregnancy: New Insights

for Pregnancy-Related Complications and Therapy,” Microorganisms, vol. 9, no. 3, p. 473, Feb. 2021, doi:

3390/microorganisms9030473.

C.-H. Tseng and C.-Y. Wu, “The gut microbiome in obesity,” Journal of the Formosan Medical Association, vol.

, pp. S3–S9, Mar. 2019, doi: 10.1016/j.jfma.2018.07.009.

T. U. Maioli et al., “Possible Benefits of Faecalibacterium prausnitzii for Obesity-Associated Gut Disorders,”

Front Pharmacol, vol. 12, no. 740636, Dec. 2021, doi: 10.3389/fphar.2021.740636.

J. E. Martinez et al., “Unhealthy Lifestyle and Gut Dysbiosis: A Better Understanding of the Effects of Poor Diet

and Nicotine on the Intestinal Microbiome,” Front Endocrinol (Lausanne), vol. 12, no. 667066, Jun. 2021, doi:

3389/fendo.2021.667066.

P. Zhang, “Influence of Foods and Nutrition on the Gut Microbiome and Implications for Intestinal Health,” Int

J Mol Sci, vol. 23, no. 17, p. 9588, Aug. 2022, doi: 10.3390/ijms23179588.

E. Jacouton, S. Mondot, P. Langella, and L. G. Bermúdez-Humarán, “Impact of Oral Administration

of Lactiplantibacillus plantarum Strain CNCM I−4459 on Obesity Induced by High-Fat Diet in Mice,”

Bioengineering, vol. 10, no. 10, p. 1151, Oct. 2023, doi: 10.3390/bioengineering10101151.

World Health Organization, “Noncommunicable diseases,” World Health Organization . Accessed: Apr. 05, 2024.

[Online]. Available: https://www.who.int/data/gho/data/themes/noncommunicable-diseases#:~:text=They%20

include%20tobacco%2C%20harmful%20use,be%20overcome%20using%20existing%20knowledge.

Centers for Disease Control and Prevention, “About Global NCDs,” Centers for Disease Control and Prevention.

Accessed: Apr. 05, 2024. [Online]. Available: https://www.cdc.gov/globalhealth/healthprotection/ncd/globalncd-overview.html

F. Bu et al., “Pathogenic or Therapeutic: The Mediating Role of Gut Microbiota in Non-Communicable

Diseases,” Front Cell Infect Microbiol, vol. 12, no. 906349, Jul. 2022, doi: 10.3389/fcimb.2022.906349.

Z. Cheng, L. Zhang, L. Yang, and H. Chu, “The critical role of gut microbiota in obesity,” Front Endocrinol

(Lausanne), vol. 13, no. 1025706, Oct. 2022, doi: 10.3389/fendo.2022.1025706.

P. Portincasa et al., “Intestinal Barrier and Permeability in Health, Obesity and NAFLD,” Biomedicines, vol. 10,

no. 83, p. 83, Dec. 2021, doi: 10.3390/biomedicines10010083.

M. I. McBurney et al., “Establishing What Constitutes a Healthy Human Gut Microbiome: State of the Science,

Regulatory Considerations, and Future Directions,” J Nutr, vol. 149, no. 11, pp. 1882–1895, Nov. 2019, doi:

1093/jn/nxz154.

E. R. Leeming, P. Louca, R. Gibson, C. Menni, T. D. Spector, and C. I. Le Roy, “The complexities of the dietmicrobiome relationship: advances and perspectives,” Genome Med, vol. 13, no. 10, Jan. 2021, doi: 10.1186/

s13073-020-00813-7

Z. Al Bander, M. D. Nitert, A. Mousa, and N. Naderpoor, “The Gut Microbiota and Inflammation: An Overview,”

Int J Environ Res Public Health, vol. 17, no. 20, p. 7618, Oct. 2020, doi: 10.3390/ijerph17207618.

R. Huang, Z. Ju, and P.-K. Zhou, “A gut dysbiotic microbiota-based hypothesis of human-to-human transmission of non-communicable diseases,” Science of The Total Environment, vol. 745, p. 141030, Nov. 2020, doi:

1016/j.scitotenv.2020.141030.

H. P. Browne, B. A. Neville, S. C. Forster, and T. D. Lawley, “Transmission of the gut microbiota: spreading of

health,” Nat Rev Microbiol, vol. 15, no. 9, pp. 531–543, Sep. 2017, doi: 10.1038/nrmicro.2017.50.

D. Patra, D. Banerjee, P. Ramprasad, S. Roy, D. Pal, and S. Dasgupta, “Recent insights of obesity-induced

gut and adipose tissue dysbiosis in type 2 diabetes,” Front Mol Biosci, vol. 10, no. 1224982, Sep. 2023, doi:

3389/fmolb.2023.1224982.

E. Amabebe, F. O. Robert, T. Agbalalah, and E. S. F. Orubu, “Microbial dysbiosis-induced obesity: role of gut

microbiota in homoeostasis of energy metabolism,” British Journal of Nutrition, vol. 123, no. 10, pp. 1127–1137,

May 2020, doi: 10.1017/S0007114520000380.

O. Lange, M. Proczko-Stepaniak, and A. Mika, “Short-Chain Fatty Acids—A Product of the Microbiome and Its

Participation in Two-Way Communication on the Microbiome-Host Mammal Line,” Curr Obes Rep, vol. 12, no.

, pp. 108–126, May 2023, doi: 10.1007/s13679-023-00503-6.

C. McLean, S. Jun, and A. Kozyrskyj, “Impact of maternal smoking on the infant gut microbiota and its association with child overweight: a scoping review,” World Journal of Pediatrics, vol. 15, no. 4, pp. 341–349, Aug.

, doi: 10.1007/s12519-019-00278-8.

V. B. Dubinkina et al., “Links of gut microbiota composition with alcohol dependence syndrome and alcoholic

liver disease,” Microbiome, vol. 5, no. 141, Dec. 2017, doi: 10.1186/s40168-017-0359-2.

A. Lenhart and W. D. Chey, “A Systematic Review of the Effects of Polyols on Gastrointestinal Health and Irritable

Bowel Syndrome,” Advances in Nutrition, vol. 8, no. 4, pp. 587–596, Jul. 2017, doi: 10.3945/an.117.015560.

J. P. Arab, M. Arrese, and V. H. Shah, “Gut microbiota in non‐alcoholic fatty liver disease and alcohol‐related

liver disease: Current concepts and perspectives,” Hepatology Research, vol. 50, no. 4, pp. 407–418, Apr.

, doi: 10.1111/hepr.13473.

T. Shima et al., “Association of life habits and fermented milk intake with stool frequency, defecatory symptoms

and intestinal microbiota in healthy Japanese adults,” Benef Microbes, vol. 10, no. 8, pp. 841–854, Dec. 2019,

doi: 10.3920/BM2019.0057.

G. J. Grosicki, R. P. Durk, and J. R. Bagley, “Rapid gut microbiome changes in a world‐class ultramarathon

runner,” Physiol Rep, vol. 7, no. 24, Dec. 2019, doi: 10.14814/phy2.14313.

Y. Liu et al., “Gut Microbiome Fermentation Determines the Efficacy of Exercise for Diabetes Prevention,” Cell

Metab, vol. 31, pp. 77–91, Jan. 2020, doi: 10.1016/j.cmet.2019.11.001.

V. Monda et al., “Exercise Modifies the Gut Microbiota with Positive Health Effects,” Oxid Med Cell Longev, vol.

, pp. 1–8, 2017, doi: 10.1155/2017/3831972.

E. A. Mutlu et al., “Inhalational exposure to particulate matter air pollution alters the composition of the gut

microbiome,” Environmental Pollution, vol. 240, pp. 817–830, Sep. 2018, doi: 10.1016/j.envpol.2018.04.130.

D. Chen et al., “Exposure to atmospheric pollutants is associated with alterations of gut microbiota in

spontaneously hypertensive rats,” Exp Ther Med, vol. 18, no. 5, pp. 3484–3492, Aug. 2019, doi: 10.3892/

etm.2019.7934.

S. Liu et al., “The Host Shapes the Gut Microbiota via Fecal MicroRNA,” Cell Host Microbe, vol. 19, pp. 32–43,

Jan. 2016, doi: 10.1016/j.chom.2015.12.005.

M. Valles-Colomer et al., “The person-to-person transmission landscape of the gut and oral microbiomes,”

Nature, vol. 614, no. 7946, pp. 125–135, Feb. 2023, doi: 10.1038/s41586-022-05620-1.

A. Sarkar et al., “Microbial transmission in animal social networks and the social microbiome,” Nat Ecol Evol,

vol. 4, no. 8, pp. 1020–1035, Jun. 2020, doi: 10.1038/s41559-020-1220-8.

S. Samartino, D. Christie, A. Penna, P. Sicotte, N. Ting, and E. Wikberg, “Social network dynamics, infant loss,

and gut microbiota composition in female Colobus vellerosus during time periods with alpha male challenges,”

Primates, vol. 65, no. 4, pp. 299–309, Jul. 2024, doi: 10.1007/s10329-024-01132-w.

C. D. Robinson, B. J. Bohannan, and R. A. Britton, “Scales of persistence: transmission and the microbiome,”

Curr Opin Microbiol, vol. 50, pp. 42–49, Aug. 2019, doi: 10.1016/j.mib.2019.09.009.

V. Lazar et al., “Gut Microbiota, Host Organism, and Diet Trialogue in Diabetes and Obesity,” Front Nutr, vol.

, no. 21, Mar. 2019, doi: 10.3389/fnut.2019.00021

P. Illiano, R. Brambilla, and C. Parolini, “The mutual interplay of gut microbiota, diet and human disease,” FEBS

J, vol. 287, no. 5, pp. 833–855, Mar. 2020, doi: 10.1111/febs.15217.

P. I. Costea et al., “Enterotypes in the landscape of gut microbial community composition,” Nat Microbiol, vol.

, pp. 8–16, Dec. 2017, doi: 10.1038/s41564-017-0072-8.

K. A. Krautkramer, J. Fan, and F. Bäckhed, “Gut microbial metabolites as multi-kingdom intermediates,” Nat

Rev Microbiol, vol. 19, no. 2, pp. 77–94, Feb. 2021, doi: 10.1038/s41579-020-0438-4.

J. Liu, Y. Tan, H. Cheng, D. Zhang, W. Feng, and C. Peng, “Functions of Gut Microbiota Metabolites, Current

Status and Future Perspectives,” Aging Dis, vol. 13, no. 4, p. 1106, 2022, doi: 10.14336/AD.2022.0104.

G. Birchenough, B. O. Schroeder, F. Bäckhed, and G. C. Hansson, “Dietary destabilisation of the balance

between the microbiota and the colonic mucus barrier,” Gut Microbes, vol. 10, no. 2, pp. 246–250, Mar. 2019,

doi: 10.1080/19490976.2018.1513765.

J. Fu, Y. Zheng, Y. Gao, and W. Xu, “Dietary Fiber Intake and Gut Microbiota in Human Health,” Microorganisms,

vol. 10, no. 12, p. 2507, Dec. 2022, doi: 10.3390/microorganisms10122507.

K. Makki, E. C. Deehan, J. Walter, and F. Bäckhed, “The Impact of Dietary Fiber on Gut Microbiota in Host Health

and Disease,” Cell Host Microbe, vol. 23, no. 6, pp. 705–715, Jun. 2018, doi: 10.1016/j.chom.2018.05.012.

P. Portincasa et al., “Gut Microbiota and Short Chain Fatty Acids: Implications in Glucose Homeostasis,” Int J

Mol Sci, vol. 23, no. 3, p. 1105, Jan. 2022, doi: 10.3390/ijms23031105.

R.-G. Xiong et al., “Health Benefits and Side Effects of Short-Chain Fatty Acids,” Foods, vol. 11, no. 18, p. 2863,

Sep. 2022, doi: 10.3390/foods11182863.

J. G. LeBlanc, F. Chain, R. Martín, L. G. Bermúdez-Humarán, S. Courau, and P. Langella, “Beneficial effects

on host energy metabolism of short-chain fatty acids and vitamins produced by commensal and probiotic

bacteria,” Microb Cell Fact, vol. 16, no. 1, p. 79, Dec. 2017, doi: 10.1186/s12934-017-0691-z.

W. Fusco et al., “Short-Chain Fatty-Acid-Producing Bacteria: Key Components of the Human Gut Microbiota,”

Nutrients, vol. 15, no. 9, p. 2211, May 2023, doi: 10.3390/nu15092211.

A. P. Lakshmanan, S. Murugesan, S. Al Khodor, and A. Terranegra, “The potential impact of a probiotic:

Akkermansia muciniphila in the regulation of blood pressure—the current facts and evidence,” J Transl Med,

vol. 20, no. 1, p. 430, Sep. 2022, doi: 10.1186/s12967-022-03631-0.

J. Shen et al., “Akkermansia muciniphila attenuated lipopolysaccharide-induced acute lung injury by modulating the gut microbiota and SCFAs in mice,” Food Funct, vol. 14, no. 23, pp. 10401–10417, 2023, doi: 10.1039/

D3FO04051H.

V. Singh et al., “Butyrate producers, ‘The Sentinel of Gut’: Their intestinal significance with and beyond butyrate, and prospective use as microbial therapeutics,” Front Microbiol, vol. 13, no. 1103836, Jan. 2023, doi:

3389/fmicb.2022.1103836.

R. Martín, L. G. Bermúdez-Humarán, and P. Langella, “Searching for the Bacterial Effector: The Example of the

Multi-Skilled Commensal Bacterium Faecalibacterium prausnitzii,” Front Microbiol, vol. 9, no. 346, Mar. 2018,

doi: 10.3389/fmicb.2018.00346.

R. K. Singh et al., “Influence of diet on the gut microbiome and implications for human health,” J Transl Med,

vol. 15, no. 1, p. 73, Dec. 2017, doi: 10.1186/s12967-017-1175-y.

D. Statovci, M. Aguilera, J. MacSharry, and S. Melgar, “The Impact of Western Diet and Nutrients on the

Microbiota and Immune Response at Mucosal Interfaces,” Front Immunol, vol. 8, no. 838, Jul. 2017, doi:

3389/fimmu.2017.00838.

A. Agus et al., “Western diet induces a shift in microbiota composition enhancing susceptibility to AdherentInvasive E. coli infection and intestinal inflammation.,” Sci Rep, vol. 6, no. 1, p. 19032, Jan. 2016, doi: 10.1038/

srep19032.

B. O. Schroeder et al., “Bifidobacteria or Fiber Protects against Diet-Induced Microbiota-Mediated Colonic

Mucus Deterioration,” Cell Host Microbe, vol. 23, no. 1, pp. 27–40, Jan. 2018, doi: 10.1016/j.chom.2017.11.004.

G. Chompre et al., “A one month high fat diet disrupts the gut microbiome and integrity of the colon inducing

adiposity and behavioral despair in male Sprague Dawley rats,” Heliyon, vol. 8, no. 11, p. e11194, Nov. 2022,

doi: 10.1016/j.heliyon.2022.e11194.

X. Zhu et al., “A High-Fat Diet Increases the Characteristics of Gut Microbial Composition and the Intestinal

Damage Associated with Non-Alcoholic Fatty Liver Disease,” Int J Mol Sci, vol. 24, no. 23, p. 16733, Nov. 2023,

doi: 10.3390/ijms242316733.

F. Schreiber, I. Balas, M. J. Robinson, and G. Bakdash, “Border Control: The Role of the Microbiome inRegulating Epithelial Barrier Function,” Cells, vol. 13, no. 6, p. 477, Mar. 2024, doi: 10.3390/cells13060477

L. Christensen et al., “Prevotella Abundance Predicts Weight Loss Success in Healthy, Overweight Adults

Consuming a Whole-Grain Diet Ad Libitum: A Post Hoc Analysis of a 6-Wk Randomized Controlled Trial,” J

Nutr, vol. 149, no. 12, pp. 2174–2181, Dec. 2019, doi: 10.1093/jn/nxz198.

H. Joung, J. Chu, B.-K. Kim, I.-S. Choi, W. Kim, and T.-S. Park, “Probiotics ameliorate chronic low-grade inflammation and fat accumulation with gut microbiota composition change in diet-induced obese mice models,”

Appl Microbiol Biotechnol, vol. 105, no. 3, pp. 1203–1213, Feb. 2021, doi: 10.1007/s00253-020-11060-6.

C. Chelakkot et al., “Akkermansia muciniphila-derived extracellular vesicles influence gut permeability through

the regulation of tight junctions,” Exp Mol Med, vol. 50, no. 2, pp. e450–e450, Feb. 2018, doi: 10.1038/

emm.2017.282.

F. Spragge et al., “Microbiome diversity protects against pathogens by nutrient blocking,” Science (1979), vol.

, no. 6676, Dec. 2023, doi: 10.1126/science.adj3502.

S. T. Kelley and J. A. Gilbert, “Studying the microbiology of the indoor environment,” Genome Biol, vol. 14, no.

, p. 202, 2013, doi: 10.1186/gb-2013-14-2-202.

A. Metwaly, S. Reitmeier, and D. Haller, “Microbiome risk profiles as biomarkers for inflammatory and metabolic

disorders,” Nat Rev Gastroenterol Hepatol, vol. 19, no. 6, pp. 383–397, Jun. 2022, doi: 10.1038/s41575-022-

-2.

A. M. Armet et al., “Rethinking healthy eating in light of the gut microbiome,” Cell Host Microbe, vol. 30, no. 6,

pp. 764–785, Jun. 2022, doi: 10.1016/j.chom.2022.04.016.

A. Kumar et al., “Communication in non-communicable diseases (NCDs) and role of immunomodulatory nutraceuticals in their management,” Front Nutr, vol. 9, no. 966152, Sep. 2022, doi: 10.3389/fnut.2022.966152.

Z. Huang et al., “Unveiling and harnessing the human gut microbiome in the rising burden of non-communicable

diseases during urbanization,” Gut Microbes, vol. 15, no. 1, Dec. 2023, doi: 10.1080/19490976.2023.2237645.

B. B. Finlay, “Are noncommunicable diseases communicable?,” Science (1979), vol. 367, no. 6475, pp.

–251, Jan. 2020, doi: 10.1126/science.aaz3834.

V. K. Ridaura et al., “Gut Microbiota from Twins Discordant for Obesity Modulate Metabolism in Mice,” Science

(1979), vol. 341, no. 6150, Sep. 2013, doi: 10.1126/science.1241214.

I. Khan et al., “Mechanism of the Gut Microbiota Colonization Resistance and Enteric Pathogen Infection,” Front

Cell Infect Microbiol, vol. 11, no. 716299, Dec. 2021, doi: 10.3389/fcimb.2021.716299.

A. M. Seekatz, N. Safdar, and S. Khanna, “The role of the gut microbiome in colonization resistance and

recurrent Clostridioides difficile infection,” Therap Adv Gastroenterol, vol. 15, pp. 1–18, Jan. 2022, doi:

1177/17562848221134396.

D. Podlesny et al., “Identification of clinical and ecological determinants of strain engraftment after fecal microbiota transplantation using metagenomics,” Cell Rep Med, vol. 3, no. 8, p. 100711, Aug. 2022, doi: 10.1016/j.

xcrm.2022.100711.

V. Horrocks, O. G. King, A. Y. G. Yip, I. M. Marques, and J. A. K. McDonald, “Role of the gut microbiota in

nutrient competition and protection against intestinal pathogen colonization,” Microbiology (N Y), vol. 169, no.

, Aug. 2023, doi: 10.1099/mic.0.001377