Bacteriocinas y sus aplicaciones: mini-revisión
Contenido principal del artículo
Resumen
Las bacteriocinas son moléculas con actividad antibacteriana, lo cual las convierte en
herramientas importantes para uso humano. Actualmente, estas moléculas son promisorias
para la preservación de alimentos sin aditivos químicos y para el tratamiento clínico de
infecciones bacterianas. Dentro de las características favorables de las bacteriocinas destacan
la sinergia con otras bacterias y su actividad contra biopelículas. La aplicación de estrategias
biotecnológicas como la activación de grupos biosintéticos de genes, la inducción por ingeniería
genética o co-cultivos, y la incorporación en bioprocesos, hacen que cada vez sea más cercano
el uso de estas moléculas en distintas industrias. El objetivo de esta mini revisión de literatura
es ofrecer información reciente y actualizada sobre las aplicaciones de las bacteriocinas en los
ámbitos de salud, agronomía e industria, desde una perspectiva biotecnológica.
Detalles del artículo
Esta obra está bajo una licencia internacional Creative Commons Atribución-NoComercial-SinDerivadas 4.0.
Los autores conservan los derechos de autor y ceden a la revista el derecho de la primera publicación y pueda editarlo, reproducirlo, distribuirlo, exhibirlo y comunicarlo en el país y en el extranjero mediante medios impresos y electrónicos. Asimismo, asumen el compromiso sobre cualquier litigio o reclamación relacionada con derechos de propiedad intelectual, exonerando de responsabilidad a la Editorial Tecnológica de Costa Rica. Además, se establece que los autores pueden realizar otros acuerdos contractuales independientes y adicionales para la distribución no exclusiva de la versión del artículo publicado en esta revista (p. ej., incluirlo en un repositorio institucional o publicarlo en un libro) siempre que indiquen claramente que el trabajo se publicó por primera vez en esta revista.
Citas
K. W. K. Tang, B. C. Millar, and J. E. Moore, “Antimicrobial Resistance (AMR),” Br J Biomed Sci, vol. 80, p.
, 2023, doi: 10.3389/BJBS.2023.11387.
T. Singhal, “Antimicrobial Resistance: The ‘Other’ Pandemic!: Based on 9th Dr. I. C. Verma Excellence Award
for Young Pediatricians Delivered as Oration on 19th Sept. 2021,” Indian J Pediatr, vol. 89, no. 6, pp. 600–606,
Jun. 2022, doi: 10.1007/S12098-021-04008-9.
F. Prestinaci, P. Pezzotti, and A. Pantosti, “Antimicrobial resistance: a global multifaceted phenomenon,”
Pathog Glob Health, vol. 109, no. 7, p. 309, Oct. 2015, doi: 10.1179/2047773215Y.0000000030.
P. Shinu et al., “Progress Report: Antimicrobial Drug Discovery in the Resistance Era,” Pharmaceuticals 2022,
Vol. 15, Page 413, vol. 15, no. 4, p. 413, Mar. 2022, doi: 10.3390/PH15040413.
M. A. Cook and G. D. Wright, “The past, present, and future of antibiotics,” Sci Transl Med, vol. 14, no. 657,
Aug. 2022, doi: 10.1126/SCITRANSLMED.ABO7793.
J. D. Hegemann, J. Birkelbach, S. Walesch, and R. Müller, “Current developments in antibiotic discovery,”
EMBO Rep, vol. 24, no. 1, Jan. 2023, doi: 10.15252/EMBR.202256184
C. Årdal et al., “Antibiotic development — economic, regulatory and societal challenges,” Nature Reviews
Microbiology 2019 18:5, vol. 18, no. 5, pp. 267–274, Nov. 2019, doi: 10.1038/s41579-019-0293-3.
G. Gradisteanu Pircalabioru et al., “Bacteriocins in the Era of Antibiotic Resistance: Rising to the
Challenge,” Pharmaceutics 2021, Vol. 13, Page 196, vol. 13, no. 2, p. 196, Feb. 2021, doi: 10.3390/
PHARMACEUTICS13020196.
L. Ghazaryan, L. Tonoyan, A. Al Ashhab, M. I. M. Soares, and O. Gillor, “The role of stress in colicin regulation,”
Arch Microbiol, vol. 196, no. 11, pp. 753–764, Oct. 2014, doi: 10.1007/S00203-014-1017-8.
F. Baquero, V. F. Lanza, M. R. Baquero, R. del Campo, and D. A. Bravo-Vázquez, “Microcins in
Enterobacteriaceae: Peptide Antimicrobials in the Eco-Active Intestinal Chemosphere,” Front Microbiol, vol.
, p. 473968, Oct. 2019, doi: 10.3389/FMICB.2019.02261.
R. C. Reuben and C. Torres, “Bacteriocins: potentials and prospects in health and agrifood systems,” vol. 206,
p. 233, 2024, doi: 10.1007/s00203-024-03948-y.
A. W. Negash and B. A. Tsehai, “Current Applications of Bacteriocin,” Int J Microbiol, vol. 2020, no. 1, p.
, Jan. 2020, doi: 10.1155/2020/4374891.
D. Lahiri et al., “Bacteriocin: A natural approach for food safety and food security,” Front Bioeng Biotechnol,
vol. 10, p. 1005918, Oct. 2022, doi: 10.3389/FBIOE.2022.1005918.
Z. Pilevar, H. Hosseini, S. Beikzadeh, E. Khanniri, and A. M. Alizadeh, “Application of Bacteriocins in Meat and
Meat Products: An Update,” Curr Nutr Food Sci, vol. 16, no. 2, pp. 120–133, Oct. 2018, doi: 10.2174/1573401
R. Kumariya, A. K. Garsa, Y. S. Rajput, S. K. Sood, N. Akhtar, and S. Patel, “Bacteriocins: Classification, synthesis, mechanism of action and resistance development in food spoilage causing bacteria,” Microb Pathog, vol.
, pp. 171–177, Mar. 2019, doi: 10.1016/J.MICPATH.2019.01.002.
M. L. Chikindas, J. Novak, A. J. M. Driessen, W. N. Konings, K. M. Schilling, and P. W. Caufield, “Mutacin
II, a bactericidal antibiotic from Streptococcus mutans,” Antimicrob Agents Chemother, vol. 39, no. 12, pp.
–2660, 1995, doi: 10.1128/AAC.39.12.2656.
M. Zimina et al., “Overview of Global Trends in Classification, Methods of Preparation and Application
of Bacteriocins,” Antibiotics 2020, Vol. 9, Page 553, vol. 9, no. 9, p. 553, Aug. 2020, doi: 10.3390/
ANTIBIOTICS9090553.
P. M. O’Connor, T. M. Kuniyoshi, R. P. Oliveira, C. Hill, R. P. Ross, and P. D. Cotter, “Antimicrobials for food
and feed; a bacteriocin perspective,” Curr Opin Biotechnol, vol. 61, pp. 160–167, Feb. 2020, doi: 10.1016/J.
COPBIO.2019.12.023.
S. Soltani, E. Biron, L. Ben Said, M. Subirade, and I. Fliss, “Bacteriocin-Based Synergetic Consortia: a Promising
Strategy to Enhance Antimicrobial Activity and Broaden the Spectrum of Inhibition,” Microbiol Spectr, vol. 10,
no. 1, Feb. 2022, doi: 10.1128/SPECTRUM.00406-21.
S. Soltani et al., “Gastrointestinal Stability and Cytotoxicity of Bacteriocins From Gram-Positive and GramNegative Bacteria: A Comparative in vitro Study,” Front Microbiol, vol. 12, p. 780355, Jan. 2022, doi: 10.3389/
FMICB.2021.780355.
Anjana and S. K. Tiwari, “Bacteriocin-Producing Probiotic Lactic Acid Bacteria in Controlling Dysbiosis of the
Gut Microbiota,” Front Cell Infect Microbiol, vol. 12, p. 851140, May 2022, doi: 10.3389/FCIMB.2022.851140.
M. Pérez-Ibarreche, D. Field, R. P. Ross, and C. Hill, “A bioengineered nisin derivative to control streptococcus
uberis biofilms,” Appl Environ Microbiol, vol. 87, no. 16, pp. 1–14, Jul. 2021, doi: 10.1128/AEM.00391-21.
J. M. Shin, J. W. Gwak, P. Kamarajan, J. C. Fenno, A. H. Rickard, and Y. L. Kapila, “Biomedical Applications
of Nisin,” J Appl Microbiol, vol. 120, no. 6, p. 1449, Jun. 2016, doi: 10.1111/JAM.13033.
A. Angelopoulou, D. Field, M. Pérez-Ibarreche, A. K. Warda, C. Hill, and R. Paul Ross, “Vancomycin and nisin
A are effective against biofilms of multi-drug resistant Staphylococcus aureus isolates from human milk,” PLoS
One, vol. 15, no. 5, p. e0233284, May 2020, doi: 10.1371/JOURNAL.PONE.0233284.
M. A. Varas et al., “Exploiting Zebrafish Xenografts for Testing the in vivo Antitumorigenic Activity of Microcin
E492 Against Human Colorectal Cancer Cells,” Front Microbiol, vol. 11, p. 492896, Mar. 2020, doi: 10.3389/
FMICB.2020.00405.
O. I. Balko, O. B. Balko, and L. V. Avdeeva, “Bacteriocins of some groups of gram-negative bacteria,” Mikrobiol
Zh, vol. 82, no. 3, pp. 71–84, May 2020, doi: 10.15407/MICROBIOLJ82.03.071.
M. G. K. Ghequire and R. De Mot, “The Tailocin Tale: Peeling off Phage Tails,” Trends Microbiol, vol. 23, no.
, pp. 587–590, Oct. 2015, doi: 10.1016/j.tim.2015.07.011.
M. Fernandez, A. Godino, A. Príncipe, G. M. Morales, and S. Fischer, “Effect of a Pseudomonas fluorescens
tailocin against phytopathogenic Xanthomonas observed by atomic force microscopy,” J Biotechnol, vol. 256,
pp. 13–20, Aug. 2017, doi: 10.1016/J.JBIOTEC.2017.07.002.
D. A. Baltrus, M. Clark, K. L. Hockett, M. Mollico, C. Smith, and S. Weaver, “Prophylactic Application of
Tailocins Prevents Infection by Pseudomonas syringae,” Phytopathology, vol. 112, no. 3, pp. 561–566, Mar.
, doi: 10.1094/PHYTO-06-21-0269-R.
M. Nazari and D. L. Smith, “A PGPR-Produced Bacteriocin for Sustainable Agriculture: A Review of Thuricin 17
Characteristics and Applications,” Front Plant Sci, vol. 11, p. 547681, Jul. 2020, doi: 10.3389/FPLS.2020.00916.
I. Hammami, M. A. Triki, and A. Rebai, “PURIFICATION AND CHARACTERIZATION OF THE NOVEL
BACTERIOCIN BAC IH7 WITH ANTIFUNGAL AND ANTIBACTERIAL PROPERTIES,” Journal of Plant Pathology,
vol. 93, no. 2, pp. 443–454, 2011, [Online]. Available: http://www.jstor.org/stable/41999016
M. M. Oliveira, E. T. A. Ramos, M. M. Drechsel, M. S. Vidal, S. Schwab, and J. I. Baldani, “Gluconacin from
Gluconacetobacter diazotrophicus PAL5 is an active bacteriocin against phytopathogenic and beneficial
sugarcane bacteria,” J Appl Microbiol, vol. 125, no. 6, pp. 1812–1826, Dec. 2018, doi: 10.1111/JAM.14074.
R. J. Dorosky, L. S. Pierson, and E. A. Pierson, “Pseudomonas chlororaphis produces multiple R-tailocin particles that broaden the killing spectrum and contribute to persistence in rhizosphere communities,” Appl Environ
Microbiol, vol. 84, no. 18, Sep. 2018, doi: 10.1128/AEM.01230-18.
K. Rachwal, A. Boguszewska, J. Kopcinska, M. Karas, M. Tchórzewski, and M. Janczarek, “The Regulatory
Protein RosR Affects Rhizobium leguminosarum bv. trifolii Protein Profiles, Cell Surface Properties, and
Symbiosis with Clover,” Front Microbiol, vol. 7, no. AUG, p. 1302, Aug. 2016, doi: 10.3389/FMICB.2016.01302.
A. Yajima, A. A. N. Van Brussel, J. Schripsema, T. Nukada, and G. Yabuta, “Synthesis and stereochemistryactivity relationship of small bacteriocin, an autoinducer of the symbiotic nitrogen-fixing bacterium rhizobium
Leguminosarum,” Org Lett, vol. 10, no. 10, pp. 2047–2050, May 2008, doi: 10.1021/OL8005198
H. Gadhoumi, E. L. A. Hayouni, E. Martinez-Rojas, W. Yeddes, and M. S. Tounsi, “Biochemical composition,
antimicrobial and antifungal activities assessment of the fermented medicinal plants extract using lactic acid
bacteria,” Arch Microbiol, vol. 204, no. 7, pp. 1–12, Jul. 2022, doi: 10.1007/S00203-022-02985-9.
Y. Feng, M. Zhang, A. S. Mujumdar, and Z. Gao, “Recent research process of fermented plant extract: A
review,” Trends Food Sci Technol, vol. 65, pp. 40–48, Jul. 2017, doi: 10.1016/J.TIFS.2017.04.006.
A. Blandino, M. E. Al-Aseeri, S. S. Pandiella, D. Cantero, and C. Webb, “Cereal-based fermented foods
and beverages,” Food Research International, vol. 36, no. 6, pp. 527–543, Jan. 2003, doi: 10.1016/S0963-
(03)00009-7.
S. D. Todorov, “Diversity of bacteriocinogenic lactic acid bacteria isolated from boza, a cereal-based fermented beverage from Bulgaria,” Food Control, vol. 21, no. 7, pp. 1011–1021, Jul. 2010, doi: 10.1016/J.
FOODCONT.2009.12.020.
K. Kirtonia et al., “Bacteriocin: A new strategic antibiofilm agent in food industries,” Biocatal Agric Biotechnol,
vol. 36, p. 102141, Sep. 2021, doi: 10.1016/J.BCAB.2021.102141.
V. A. Vincent Volpane et al., “Applications of Bacteriocin and Protective Cultures in Dairy Products: A MiniReview,” Asian J Biol Life Sci, vol. 10, doi: 10.5530/ajbls.2021.10.36.
L. Zhang, M. Zhang, and A. S. Mujumdar, “New technology to overcome defects in production of fermented plant products- a review,” Trends Food Sci Technol, vol. 116, pp. 829–841, Oct. 2021, doi: 10.1016/J.
TIFS.2021.08.014.
A. A. Baranova, V. A. Alferova, V. A. Korshun, and A. P. Tyurin, “Modern Trends in Natural Antibiotic Discovery,”
Life, vol. 13, no. 5, 2023, doi: 10.3390/life13051073.
R. Fernández-Fernández et al., “Genomic Analysis of Bacteriocin-Producing Staphylococci: High Prevalence
of Lanthipeptides and the Micrococcin P1 Biosynthetic Gene Clusters,” Probiotics Antimicrobial Proteins, pp.1-
, 2023, doi: 10.1007/S12602-023-10119-W.
P. Chanos and T. Mygind, “Co-culture-inducible bacteriocin production in lactic acid bacteria,” Appl Microbiol
Biotechnol, vol. 100, no. 10, pp. 4297–4308, May 2016, doi: 10.1007/S00253-016-7486-8.
W. Liu, J. Zhou, F. Tan, H. Yin, C. Yang, and K. Lu, “Improvement of nisin production by using the integration
strategy of co-cultivation fermentation, foam fractionation and pervaporation,” LWT, vol. 142, May 2021, doi:
1016/J.LWT.2021.111093.
D. Promrug et al., “Cocultures of Enterococcus faecium and Aeromonas veronii Induce the Secretion of
Bacteriocin-like Substances against Aeromonas,” J Agric Food Chem, vol. 71, no. 43, pp. 16194–16203, Nov.
, doi: 10.1021/ACS.JAFC.3C04019.
R. Nie, Z. Zhu, Y. Qi, Z. Wang, H. Sun, and G. Liu, “Bacteriocin production enhancing mechanism of
Lactiplantibacillus paraplantarum RX-8 response to Wickerhamomyces anomalus Y-5 by transcriptomic and
proteomic analyses,” Front Microbiol, vol. 14, p. 1111516, Feb. 2023, doi: 10.3389/FMICB.2023.1111516.
A. V. Diachkova, A. A. Nogina, S. L. Tikhonov, N. V. Tikhonova, D. G. Popova, and L. S. Kudryashov,
“Biotechnology for bacteriocin synthesis using photostimulation,” BIO Web Conf, vol. 23, p. 02003, 2020, doi:
1051/BIOCONF/20202302003.
M. Gasparek, H. Steel, and A. Papachristodoulou, “Deciphering mechanisms of production of natural compounds using inducer-producer microbial consortia,” Biotechnol Adv, vol. 64, p. 108117, May 2023, doi:
1016/J.BIOTECHADV.2023.108117.
S. Priyanka, S. K. R. Namasivayam, S. Sudha, M. Lavanya, and T. Abiraamavalli, “Potential biological active bacteriocin production by Bifidobacterium via eco-friendly, low-cost solid state fermentation principle,”
Environmental Quality Management, vol. 34, no. 1, p. e22210, Sep. 2024, doi: 10.1002/TQEM.22210.
A. L. Miller et al., “Bacteriocin production by lactic acid bacteria using ice cream co-product as the fermentation substrate,” J Dairy Sci, vol. 107, pp. 3468–3477, 2024, doi: 10.3168/jds.2023-24249.
D. F. Benítez-Chao, A. León-Buitimea, J. A. Lerma-Escalera, and J. R. Morones-Ramírez, “Bacteriocins: An
Overview of Antimicrobial, Toxicity, and Biosafety Assessment by in vivo Models,” Front Microbiol, vol. 12, Apr.
, doi: 10.3389/FMICB.2021.630695.
H. Chen, F. Tian, S. Li, Y. Xie, H. Zhang, and W. Chen, “Cloning and heterologous expression of a bacteriocin
sakacin P from Lactobacillus sakei in Escherichia coli,” Appl Microbiol Biotechnol, vol. 94, no. 4, pp. 1061–
, May 2012, doi: 10.1007/S00253-012-3872-Z
A. Yajima, A. A. N. Van Brussel, J. Schripsema, T. Nukada, and G. Yabuta, “Synthesis and stereochemistryactivity relationship of small bacteriocin, an autoinducer of the symbiotic nitrogen-fixing bacterium rhizobium
Leguminosarum,” Org Lett, vol. 10, no. 10, pp. 2047–2050, May 2008, doi: 10.1021/OL8005198
H. Gadhoumi, E. L. A. Hayouni, E. Martinez-Rojas, W. Yeddes, and M. S. Tounsi, “Biochemical composition,
antimicrobial and antifungal activities assessment of the fermented medicinal plants extract using lactic acid
bacteria,” Arch Microbiol, vol. 204, no. 7, pp. 1–12, Jul. 2022, doi: 10.1007/S00203-022-02985-9.
Y. Feng, M. Zhang, A. S. Mujumdar, and Z. Gao, “Recent research process of fermented plant extract: A
review,” Trends Food Sci Technol, vol. 65, pp. 40–48, Jul. 2017, doi: 10.1016/J.TIFS.2017.04.006.
A. Blandino, M. E. Al-Aseeri, S. S. Pandiella, D. Cantero, and C. Webb, “Cereal-based fermented foods
and beverages,” Food Research International, vol. 36, no. 6, pp. 527–543, Jan. 2003, doi: 10.1016/S0963-
(03)00009-7.
S. D. Todorov, “Diversity of bacteriocinogenic lactic acid bacteria isolated from boza, a cereal-based fermented beverage from Bulgaria,” Food Control, vol. 21, no. 7, pp. 1011–1021, Jul. 2010, doi: 10.1016/J.
FOODCONT.2009.12.020.
K. Kirtonia et al., “Bacteriocin: A new strategic antibiofilm agent in food industries,” Biocatal Agric Biotechnol,
vol. 36, p. 102141, Sep. 2021, doi: 10.1016/J.BCAB.2021.102141.
V. A. Vincent Volpane et al., “Applications of Bacteriocin and Protective Cultures in Dairy Products: A MiniReview,” Asian J Biol Life Sci, vol. 10, doi: 10.5530/ajbls.2021.10.36.
L. Zhang, M. Zhang, and A. S. Mujumdar, “New technology to overcome defects in production of fermented plant products- a review,” Trends Food Sci Technol, vol. 116, pp. 829–841, Oct. 2021, doi: 10.1016/J.
TIFS.2021.08.014.
A. A. Baranova, V. A. Alferova, V. A. Korshun, and A. P. Tyurin, “Modern Trends in Natural Antibiotic Discovery,”
Life, vol. 13, no. 5, 2023, doi: 10.3390/life13051073.
R. Fernández-Fernández et al., “Genomic Analysis of Bacteriocin-Producing Staphylococci: High Prevalence
of Lanthipeptides and the Micrococcin P1 Biosynthetic Gene Clusters,” Probiotics Antimicrobial Proteins, pp.1-
, 2023, doi: 10.1007/S12602-023-10119-W.
P. Chanos and T. Mygind, “Co-culture-inducible bacteriocin production in lactic acid bacteria,” Appl Microbiol
Biotechnol, vol. 100, no. 10, pp. 4297–4308, May 2016, doi: 10.1007/S00253-016-7486-8.
W. Liu, J. Zhou, F. Tan, H. Yin, C. Yang, and K. Lu, “Improvement of nisin production by using the integration
strategy of co-cultivation fermentation, foam fractionation and pervaporation,” LWT, vol. 142, May 2021, doi:
1016/J.LWT.2021.111093.
D. Promrug et al., “Cocultures of Enterococcus faecium and Aeromonas veronii Induce the Secretion of
Bacteriocin-like Substances against Aeromonas,” J Agric Food Chem, vol. 71, no. 43, pp. 16194–16203, Nov.
, doi: 10.1021/ACS.JAFC.3C04019.
R. Nie, Z. Zhu, Y. Qi, Z. Wang, H. Sun, and G. Liu, “Bacteriocin production enhancing mechanism of
Lactiplantibacillus paraplantarum RX-8 response to Wickerhamomyces anomalus Y-5 by transcriptomic and
proteomic analyses,” Front Microbiol, vol. 14, p. 1111516, Feb. 2023, doi: 10.3389/FMICB.2023.1111516.
A. V. Diachkova, A. A. Nogina, S. L. Tikhonov, N. V. Tikhonova, D. G. Popova, and L. S. Kudryashov,
“Biotechnology for bacteriocin synthesis using photostimulation,” BIO Web Conf, vol. 23, p. 02003, 2020, doi:
1051/BIOCONF/20202302003.
M. Gasparek, H. Steel, and A. Papachristodoulou, “Deciphering mechanisms of production of natural compounds using inducer-producer microbial consortia,” Biotechnol Adv, vol. 64, p. 108117, May 2023, doi:
1016/J.BIOTECHADV.2023.108117.
S. Priyanka, S. K. R. Namasivayam, S. Sudha, M. Lavanya, and T. Abiraamavalli, “Potential biological active bacteriocin production by Bifidobacterium via eco-friendly, low-cost solid state fermentation principle,”
Environmental Quality Management, vol. 34, no. 1, p. e22210, Sep. 2024, doi: 10.1002/TQEM.22210.
A. L. Miller et al., “Bacteriocin production by lactic acid bacteria using ice cream co-product as the fermentation substrate,” J Dairy Sci, vol. 107, pp. 3468–3477, 2024, doi: 10.3168/jds.2023-24249.
D. F. Benítez-Chao, A. León-Buitimea, J. A. Lerma-Escalera, and J. R. Morones-Ramírez, “Bacteriocins: An
Overview of Antimicrobial, Toxicity, and Biosafety Assessment by in vivo Models,” Front Microbiol, vol. 12, Apr.
, doi: 10.3389/FMICB.2021.630695.
H. Chen, F. Tian, S. Li, Y. Xie, H. Zhang, and W. Chen, “Cloning and heterologous expression of a bacteriocin
sakacin P from Lactobacillus sakei in Escherichia coli,” Appl Microbiol Biotechnol, vol. 94, no. 4, pp. 1061–
, May 2012, doi: 10.1007/S00253-012-3872-Z
J. J. Jiménez et al., “Cloning strategies for heterologous expression of the bacteriocin enterocin A by
Lactobacillus sakei Lb790, Lb. plantarum NC8 and Lb. casei CECT475,” Microb Cell Fact, vol. 14, no. 1, pp.
–11, Oct. 2015, doi: 10.1186/S12934-015-0346-X.
R. Li, X. Wan, T. M. Takala, and P. E. J. Saris, “Heterologous Expression of the Leuconostoc Bacteriocin
Leucocin C in Probiotic Yeast Saccharomyces boulardii,” Probiotics Antimicrob Proteins, vol. 13, no. 1, pp.
–237, Feb. 2021, doi: 10.1007/S12602-020-09676-1.
C. A. Van Reenen, M. L. Chikindas, W. H. Van Zyl, and L. M. T. Dicks, “Characterization and heterologous
expression of a class IIa bacteriocin, plantaricin 423 from Lactobacillus plantarum 423, in Saccharomyces
cerevisiae,” Int J Food Microbiol, vol. 81, no. 1, pp. 29–40, Feb. 2003, doi: 10.1016/S0168-1605(02)00164-2.
J. M. Rodríguez, M. I. Martínez, N. Horn, and H. M. Dodd, “Heterologous production of bacteriocins by lactic
acid bacteria,” Int J Food Microbiol, vol. 80, no. 2, pp. 101–116, Jan. 2003, doi: 10.1016/S0168-1605(02)00153-
D. Dey et al., “ANTIVIRAL EFFECTS OF BACTERIOCIN AGAINST ANIMAL-TO-HUMAN TRANSMITTABLE
MUTATED SARS-COV-2: A SYSTEMATIC REVIEW,” Front Agric Sci Eng, vol. 8, no. 4, pp. 603–622, Dec. 2021,
doi: 10.15302/J-FASE-2021397