Bacteriocinas y sus aplicaciones: mini-revisión

Contenido principal del artículo

Plamen Cubillo-Komarovova
Roberto Ledezma-Acevedo
Valeria Salazar-Cedeño
Daniela Murillo-Rodríguez
Dylan Stern-Flores

Resumen

Las bacteriocinas son moléculas con actividad antibacteriana, lo cual las convierte en
herramientas importantes para uso humano. Actualmente, estas moléculas son promisorias
para la preservación de alimentos sin aditivos químicos y para el tratamiento clínico de
infecciones bacterianas. Dentro de las características favorables de las bacteriocinas destacan
la sinergia con otras bacterias y su actividad contra biopelículas. La aplicación de estrategias
biotecnológicas como la activación de grupos biosintéticos de genes, la inducción por ingeniería
genética o co-cultivos, y la incorporación en bioprocesos, hacen que cada vez sea más cercano
el uso de estas moléculas en distintas industrias. El objetivo de esta mini revisión de literatura
es ofrecer información reciente y actualizada sobre las aplicaciones de las bacteriocinas en los
ámbitos de salud, agronomía e industria, desde una perspectiva biotecnológica.

Detalles del artículo

Cómo citar
Cubillo-Komarovova, P., Ledezma-Acevedo, R., Salazar-Cedeño, V., Murillo-Rodríguez, D., & Stern-Flores, D. (2024). Bacteriocinas y sus aplicaciones: mini-revisión. Revista Tecnología En Marcha, 37(9), Pág. 73–83. https://doi.org/10.18845/tm.v37i9.7613
Sección
Artículo científico

Citas

K. W. K. Tang, B. C. Millar, and J. E. Moore, “Antimicrobial Resistance (AMR),” Br J Biomed Sci, vol. 80, p.

, 2023, doi: 10.3389/BJBS.2023.11387.

T. Singhal, “Antimicrobial Resistance: The ‘Other’ Pandemic!: Based on 9th Dr. I. C. Verma Excellence Award

for Young Pediatricians Delivered as Oration on 19th Sept. 2021,” Indian J Pediatr, vol. 89, no. 6, pp. 600–606,

Jun. 2022, doi: 10.1007/S12098-021-04008-9.

F. Prestinaci, P. Pezzotti, and A. Pantosti, “Antimicrobial resistance: a global multifaceted phenomenon,”

Pathog Glob Health, vol. 109, no. 7, p. 309, Oct. 2015, doi: 10.1179/2047773215Y.0000000030.

P. Shinu et al., “Progress Report: Antimicrobial Drug Discovery in the Resistance Era,” Pharmaceuticals 2022,

Vol. 15, Page 413, vol. 15, no. 4, p. 413, Mar. 2022, doi: 10.3390/PH15040413.

M. A. Cook and G. D. Wright, “The past, present, and future of antibiotics,” Sci Transl Med, vol. 14, no. 657,

Aug. 2022, doi: 10.1126/SCITRANSLMED.ABO7793.

J. D. Hegemann, J. Birkelbach, S. Walesch, and R. Müller, “Current developments in antibiotic discovery,”

EMBO Rep, vol. 24, no. 1, Jan. 2023, doi: 10.15252/EMBR.202256184

C. Årdal et al., “Antibiotic development — economic, regulatory and societal challenges,” Nature Reviews

Microbiology 2019 18:5, vol. 18, no. 5, pp. 267–274, Nov. 2019, doi: 10.1038/s41579-019-0293-3.

G. Gradisteanu Pircalabioru et al., “Bacteriocins in the Era of Antibiotic Resistance: Rising to the

Challenge,” Pharmaceutics 2021, Vol. 13, Page 196, vol. 13, no. 2, p. 196, Feb. 2021, doi: 10.3390/

PHARMACEUTICS13020196.

L. Ghazaryan, L. Tonoyan, A. Al Ashhab, M. I. M. Soares, and O. Gillor, “The role of stress in colicin regulation,”

Arch Microbiol, vol. 196, no. 11, pp. 753–764, Oct. 2014, doi: 10.1007/S00203-014-1017-8.

F. Baquero, V. F. Lanza, M. R. Baquero, R. del Campo, and D. A. Bravo-Vázquez, “Microcins in

Enterobacteriaceae: Peptide Antimicrobials in the Eco-Active Intestinal Chemosphere,” Front Microbiol, vol.

, p. 473968, Oct. 2019, doi: 10.3389/FMICB.2019.02261.

R. C. Reuben and C. Torres, “Bacteriocins: potentials and prospects in health and agrifood systems,” vol. 206,

p. 233, 2024, doi: 10.1007/s00203-024-03948-y.

A. W. Negash and B. A. Tsehai, “Current Applications of Bacteriocin,” Int J Microbiol, vol. 2020, no. 1, p.

, Jan. 2020, doi: 10.1155/2020/4374891.

D. Lahiri et al., “Bacteriocin: A natural approach for food safety and food security,” Front Bioeng Biotechnol,

vol. 10, p. 1005918, Oct. 2022, doi: 10.3389/FBIOE.2022.1005918.

Z. Pilevar, H. Hosseini, S. Beikzadeh, E. Khanniri, and A. M. Alizadeh, “Application of Bacteriocins in Meat and

Meat Products: An Update,” Curr Nutr Food Sci, vol. 16, no. 2, pp. 120–133, Oct. 2018, doi: 10.2174/1573401

R. Kumariya, A. K. Garsa, Y. S. Rajput, S. K. Sood, N. Akhtar, and S. Patel, “Bacteriocins: Classification, synthesis, mechanism of action and resistance development in food spoilage causing bacteria,” Microb Pathog, vol.

, pp. 171–177, Mar. 2019, doi: 10.1016/J.MICPATH.2019.01.002.

M. L. Chikindas, J. Novak, A. J. M. Driessen, W. N. Konings, K. M. Schilling, and P. W. Caufield, “Mutacin

II, a bactericidal antibiotic from Streptococcus mutans,” Antimicrob Agents Chemother, vol. 39, no. 12, pp.

–2660, 1995, doi: 10.1128/AAC.39.12.2656.

M. Zimina et al., “Overview of Global Trends in Classification, Methods of Preparation and Application

of Bacteriocins,” Antibiotics 2020, Vol. 9, Page 553, vol. 9, no. 9, p. 553, Aug. 2020, doi: 10.3390/

ANTIBIOTICS9090553.

P. M. O’Connor, T. M. Kuniyoshi, R. P. Oliveira, C. Hill, R. P. Ross, and P. D. Cotter, “Antimicrobials for food

and feed; a bacteriocin perspective,” Curr Opin Biotechnol, vol. 61, pp. 160–167, Feb. 2020, doi: 10.1016/J.

COPBIO.2019.12.023.

S. Soltani, E. Biron, L. Ben Said, M. Subirade, and I. Fliss, “Bacteriocin-Based Synergetic Consortia: a Promising

Strategy to Enhance Antimicrobial Activity and Broaden the Spectrum of Inhibition,” Microbiol Spectr, vol. 10,

no. 1, Feb. 2022, doi: 10.1128/SPECTRUM.00406-21.

S. Soltani et al., “Gastrointestinal Stability and Cytotoxicity of Bacteriocins From Gram-Positive and GramNegative Bacteria: A Comparative in vitro Study,” Front Microbiol, vol. 12, p. 780355, Jan. 2022, doi: 10.3389/

FMICB.2021.780355.

Anjana and S. K. Tiwari, “Bacteriocin-Producing Probiotic Lactic Acid Bacteria in Controlling Dysbiosis of the

Gut Microbiota,” Front Cell Infect Microbiol, vol. 12, p. 851140, May 2022, doi: 10.3389/FCIMB.2022.851140.

M. Pérez-Ibarreche, D. Field, R. P. Ross, and C. Hill, “A bioengineered nisin derivative to control streptococcus

uberis biofilms,” Appl Environ Microbiol, vol. 87, no. 16, pp. 1–14, Jul. 2021, doi: 10.1128/AEM.00391-21.

J. M. Shin, J. W. Gwak, P. Kamarajan, J. C. Fenno, A. H. Rickard, and Y. L. Kapila, “Biomedical Applications

of Nisin,” J Appl Microbiol, vol. 120, no. 6, p. 1449, Jun. 2016, doi: 10.1111/JAM.13033.

A. Angelopoulou, D. Field, M. Pérez-Ibarreche, A. K. Warda, C. Hill, and R. Paul Ross, “Vancomycin and nisin

A are effective against biofilms of multi-drug resistant Staphylococcus aureus isolates from human milk,” PLoS

One, vol. 15, no. 5, p. e0233284, May 2020, doi: 10.1371/JOURNAL.PONE.0233284.

M. A. Varas et al., “Exploiting Zebrafish Xenografts for Testing the in vivo Antitumorigenic Activity of Microcin

E492 Against Human Colorectal Cancer Cells,” Front Microbiol, vol. 11, p. 492896, Mar. 2020, doi: 10.3389/

FMICB.2020.00405.

O. I. Balko, O. B. Balko, and L. V. Avdeeva, “Bacteriocins of some groups of gram-negative bacteria,” Mikrobiol

Zh, vol. 82, no. 3, pp. 71–84, May 2020, doi: 10.15407/MICROBIOLJ82.03.071.

M. G. K. Ghequire and R. De Mot, “The Tailocin Tale: Peeling off Phage Tails,” Trends Microbiol, vol. 23, no.

, pp. 587–590, Oct. 2015, doi: 10.1016/j.tim.2015.07.011.

M. Fernandez, A. Godino, A. Príncipe, G. M. Morales, and S. Fischer, “Effect of a Pseudomonas fluorescens

tailocin against phytopathogenic Xanthomonas observed by atomic force microscopy,” J Biotechnol, vol. 256,

pp. 13–20, Aug. 2017, doi: 10.1016/J.JBIOTEC.2017.07.002.

D. A. Baltrus, M. Clark, K. L. Hockett, M. Mollico, C. Smith, and S. Weaver, “Prophylactic Application of

Tailocins Prevents Infection by Pseudomonas syringae,” Phytopathology, vol. 112, no. 3, pp. 561–566, Mar.

, doi: 10.1094/PHYTO-06-21-0269-R.

M. Nazari and D. L. Smith, “A PGPR-Produced Bacteriocin for Sustainable Agriculture: A Review of Thuricin 17

Characteristics and Applications,” Front Plant Sci, vol. 11, p. 547681, Jul. 2020, doi: 10.3389/FPLS.2020.00916.

I. Hammami, M. A. Triki, and A. Rebai, “PURIFICATION AND CHARACTERIZATION OF THE NOVEL

BACTERIOCIN BAC IH7 WITH ANTIFUNGAL AND ANTIBACTERIAL PROPERTIES,” Journal of Plant Pathology,

vol. 93, no. 2, pp. 443–454, 2011, [Online]. Available: http://www.jstor.org/stable/41999016

M. M. Oliveira, E. T. A. Ramos, M. M. Drechsel, M. S. Vidal, S. Schwab, and J. I. Baldani, “Gluconacin from

Gluconacetobacter diazotrophicus PAL5 is an active bacteriocin against phytopathogenic and beneficial

sugarcane bacteria,” J Appl Microbiol, vol. 125, no. 6, pp. 1812–1826, Dec. 2018, doi: 10.1111/JAM.14074.

R. J. Dorosky, L. S. Pierson, and E. A. Pierson, “Pseudomonas chlororaphis produces multiple R-tailocin particles that broaden the killing spectrum and contribute to persistence in rhizosphere communities,” Appl Environ

Microbiol, vol. 84, no. 18, Sep. 2018, doi: 10.1128/AEM.01230-18.

K. Rachwal, A. Boguszewska, J. Kopcinska, M. Karas, M. Tchórzewski, and M. Janczarek, “The Regulatory

Protein RosR Affects Rhizobium leguminosarum bv. trifolii Protein Profiles, Cell Surface Properties, and

Symbiosis with Clover,” Front Microbiol, vol. 7, no. AUG, p. 1302, Aug. 2016, doi: 10.3389/FMICB.2016.01302.

A. Yajima, A. A. N. Van Brussel, J. Schripsema, T. Nukada, and G. Yabuta, “Synthesis and stereochemistryactivity relationship of small bacteriocin, an autoinducer of the symbiotic nitrogen-fixing bacterium rhizobium

Leguminosarum,” Org Lett, vol. 10, no. 10, pp. 2047–2050, May 2008, doi: 10.1021/OL8005198

H. Gadhoumi, E. L. A. Hayouni, E. Martinez-Rojas, W. Yeddes, and M. S. Tounsi, “Biochemical composition,

antimicrobial and antifungal activities assessment of the fermented medicinal plants extract using lactic acid

bacteria,” Arch Microbiol, vol. 204, no. 7, pp. 1–12, Jul. 2022, doi: 10.1007/S00203-022-02985-9.

Y. Feng, M. Zhang, A. S. Mujumdar, and Z. Gao, “Recent research process of fermented plant extract: A

review,” Trends Food Sci Technol, vol. 65, pp. 40–48, Jul. 2017, doi: 10.1016/J.TIFS.2017.04.006.

A. Blandino, M. E. Al-Aseeri, S. S. Pandiella, D. Cantero, and C. Webb, “Cereal-based fermented foods

and beverages,” Food Research International, vol. 36, no. 6, pp. 527–543, Jan. 2003, doi: 10.1016/S0963-

(03)00009-7.

S. D. Todorov, “Diversity of bacteriocinogenic lactic acid bacteria isolated from boza, a cereal-based fermented beverage from Bulgaria,” Food Control, vol. 21, no. 7, pp. 1011–1021, Jul. 2010, doi: 10.1016/J.

FOODCONT.2009.12.020.

K. Kirtonia et al., “Bacteriocin: A new strategic antibiofilm agent in food industries,” Biocatal Agric Biotechnol,

vol. 36, p. 102141, Sep. 2021, doi: 10.1016/J.BCAB.2021.102141.

V. A. Vincent Volpane et al., “Applications of Bacteriocin and Protective Cultures in Dairy Products: A MiniReview,” Asian J Biol Life Sci, vol. 10, doi: 10.5530/ajbls.2021.10.36.

L. Zhang, M. Zhang, and A. S. Mujumdar, “New technology to overcome defects in production of fermented plant products- a review,” Trends Food Sci Technol, vol. 116, pp. 829–841, Oct. 2021, doi: 10.1016/J.

TIFS.2021.08.014.

A. A. Baranova, V. A. Alferova, V. A. Korshun, and A. P. Tyurin, “Modern Trends in Natural Antibiotic Discovery,”

Life, vol. 13, no. 5, 2023, doi: 10.3390/life13051073.

R. Fernández-Fernández et al., “Genomic Analysis of Bacteriocin-Producing Staphylococci: High Prevalence

of Lanthipeptides and the Micrococcin P1 Biosynthetic Gene Clusters,” Probiotics Antimicrobial Proteins, pp.1-

, 2023, doi: 10.1007/S12602-023-10119-W.

P. Chanos and T. Mygind, “Co-culture-inducible bacteriocin production in lactic acid bacteria,” Appl Microbiol

Biotechnol, vol. 100, no. 10, pp. 4297–4308, May 2016, doi: 10.1007/S00253-016-7486-8.

W. Liu, J. Zhou, F. Tan, H. Yin, C. Yang, and K. Lu, “Improvement of nisin production by using the integration

strategy of co-cultivation fermentation, foam fractionation and pervaporation,” LWT, vol. 142, May 2021, doi:

1016/J.LWT.2021.111093.

D. Promrug et al., “Cocultures of Enterococcus faecium and Aeromonas veronii Induce the Secretion of

Bacteriocin-like Substances against Aeromonas,” J Agric Food Chem, vol. 71, no. 43, pp. 16194–16203, Nov.

, doi: 10.1021/ACS.JAFC.3C04019.

R. Nie, Z. Zhu, Y. Qi, Z. Wang, H. Sun, and G. Liu, “Bacteriocin production enhancing mechanism of

Lactiplantibacillus paraplantarum RX-8 response to Wickerhamomyces anomalus Y-5 by transcriptomic and

proteomic analyses,” Front Microbiol, vol. 14, p. 1111516, Feb. 2023, doi: 10.3389/FMICB.2023.1111516.

A. V. Diachkova, A. A. Nogina, S. L. Tikhonov, N. V. Tikhonova, D. G. Popova, and L. S. Kudryashov,

“Biotechnology for bacteriocin synthesis using photostimulation,” BIO Web Conf, vol. 23, p. 02003, 2020, doi:

1051/BIOCONF/20202302003.

M. Gasparek, H. Steel, and A. Papachristodoulou, “Deciphering mechanisms of production of natural compounds using inducer-producer microbial consortia,” Biotechnol Adv, vol. 64, p. 108117, May 2023, doi:

1016/J.BIOTECHADV.2023.108117.

S. Priyanka, S. K. R. Namasivayam, S. Sudha, M. Lavanya, and T. Abiraamavalli, “Potential biological active bacteriocin production by Bifidobacterium via eco-friendly, low-cost solid state fermentation principle,”

Environmental Quality Management, vol. 34, no. 1, p. e22210, Sep. 2024, doi: 10.1002/TQEM.22210.

A. L. Miller et al., “Bacteriocin production by lactic acid bacteria using ice cream co-product as the fermentation substrate,” J Dairy Sci, vol. 107, pp. 3468–3477, 2024, doi: 10.3168/jds.2023-24249.

D. F. Benítez-Chao, A. León-Buitimea, J. A. Lerma-Escalera, and J. R. Morones-Ramírez, “Bacteriocins: An

Overview of Antimicrobial, Toxicity, and Biosafety Assessment by in vivo Models,” Front Microbiol, vol. 12, Apr.

, doi: 10.3389/FMICB.2021.630695.

H. Chen, F. Tian, S. Li, Y. Xie, H. Zhang, and W. Chen, “Cloning and heterologous expression of a bacteriocin

sakacin P from Lactobacillus sakei in Escherichia coli,” Appl Microbiol Biotechnol, vol. 94, no. 4, pp. 1061–

, May 2012, doi: 10.1007/S00253-012-3872-Z

A. Yajima, A. A. N. Van Brussel, J. Schripsema, T. Nukada, and G. Yabuta, “Synthesis and stereochemistryactivity relationship of small bacteriocin, an autoinducer of the symbiotic nitrogen-fixing bacterium rhizobium

Leguminosarum,” Org Lett, vol. 10, no. 10, pp. 2047–2050, May 2008, doi: 10.1021/OL8005198

H. Gadhoumi, E. L. A. Hayouni, E. Martinez-Rojas, W. Yeddes, and M. S. Tounsi, “Biochemical composition,

antimicrobial and antifungal activities assessment of the fermented medicinal plants extract using lactic acid

bacteria,” Arch Microbiol, vol. 204, no. 7, pp. 1–12, Jul. 2022, doi: 10.1007/S00203-022-02985-9.

Y. Feng, M. Zhang, A. S. Mujumdar, and Z. Gao, “Recent research process of fermented plant extract: A

review,” Trends Food Sci Technol, vol. 65, pp. 40–48, Jul. 2017, doi: 10.1016/J.TIFS.2017.04.006.

A. Blandino, M. E. Al-Aseeri, S. S. Pandiella, D. Cantero, and C. Webb, “Cereal-based fermented foods

and beverages,” Food Research International, vol. 36, no. 6, pp. 527–543, Jan. 2003, doi: 10.1016/S0963-

(03)00009-7.

S. D. Todorov, “Diversity of bacteriocinogenic lactic acid bacteria isolated from boza, a cereal-based fermented beverage from Bulgaria,” Food Control, vol. 21, no. 7, pp. 1011–1021, Jul. 2010, doi: 10.1016/J.

FOODCONT.2009.12.020.

K. Kirtonia et al., “Bacteriocin: A new strategic antibiofilm agent in food industries,” Biocatal Agric Biotechnol,

vol. 36, p. 102141, Sep. 2021, doi: 10.1016/J.BCAB.2021.102141.

V. A. Vincent Volpane et al., “Applications of Bacteriocin and Protective Cultures in Dairy Products: A MiniReview,” Asian J Biol Life Sci, vol. 10, doi: 10.5530/ajbls.2021.10.36.

L. Zhang, M. Zhang, and A. S. Mujumdar, “New technology to overcome defects in production of fermented plant products- a review,” Trends Food Sci Technol, vol. 116, pp. 829–841, Oct. 2021, doi: 10.1016/J.

TIFS.2021.08.014.

A. A. Baranova, V. A. Alferova, V. A. Korshun, and A. P. Tyurin, “Modern Trends in Natural Antibiotic Discovery,”

Life, vol. 13, no. 5, 2023, doi: 10.3390/life13051073.

R. Fernández-Fernández et al., “Genomic Analysis of Bacteriocin-Producing Staphylococci: High Prevalence

of Lanthipeptides and the Micrococcin P1 Biosynthetic Gene Clusters,” Probiotics Antimicrobial Proteins, pp.1-

, 2023, doi: 10.1007/S12602-023-10119-W.

P. Chanos and T. Mygind, “Co-culture-inducible bacteriocin production in lactic acid bacteria,” Appl Microbiol

Biotechnol, vol. 100, no. 10, pp. 4297–4308, May 2016, doi: 10.1007/S00253-016-7486-8.

W. Liu, J. Zhou, F. Tan, H. Yin, C. Yang, and K. Lu, “Improvement of nisin production by using the integration

strategy of co-cultivation fermentation, foam fractionation and pervaporation,” LWT, vol. 142, May 2021, doi:

1016/J.LWT.2021.111093.

D. Promrug et al., “Cocultures of Enterococcus faecium and Aeromonas veronii Induce the Secretion of

Bacteriocin-like Substances against Aeromonas,” J Agric Food Chem, vol. 71, no. 43, pp. 16194–16203, Nov.

, doi: 10.1021/ACS.JAFC.3C04019.

R. Nie, Z. Zhu, Y. Qi, Z. Wang, H. Sun, and G. Liu, “Bacteriocin production enhancing mechanism of

Lactiplantibacillus paraplantarum RX-8 response to Wickerhamomyces anomalus Y-5 by transcriptomic and

proteomic analyses,” Front Microbiol, vol. 14, p. 1111516, Feb. 2023, doi: 10.3389/FMICB.2023.1111516.

A. V. Diachkova, A. A. Nogina, S. L. Tikhonov, N. V. Tikhonova, D. G. Popova, and L. S. Kudryashov,

“Biotechnology for bacteriocin synthesis using photostimulation,” BIO Web Conf, vol. 23, p. 02003, 2020, doi:

1051/BIOCONF/20202302003.

M. Gasparek, H. Steel, and A. Papachristodoulou, “Deciphering mechanisms of production of natural compounds using inducer-producer microbial consortia,” Biotechnol Adv, vol. 64, p. 108117, May 2023, doi:

1016/J.BIOTECHADV.2023.108117.

S. Priyanka, S. K. R. Namasivayam, S. Sudha, M. Lavanya, and T. Abiraamavalli, “Potential biological active bacteriocin production by Bifidobacterium via eco-friendly, low-cost solid state fermentation principle,”

Environmental Quality Management, vol. 34, no. 1, p. e22210, Sep. 2024, doi: 10.1002/TQEM.22210.

A. L. Miller et al., “Bacteriocin production by lactic acid bacteria using ice cream co-product as the fermentation substrate,” J Dairy Sci, vol. 107, pp. 3468–3477, 2024, doi: 10.3168/jds.2023-24249.

D. F. Benítez-Chao, A. León-Buitimea, J. A. Lerma-Escalera, and J. R. Morones-Ramírez, “Bacteriocins: An

Overview of Antimicrobial, Toxicity, and Biosafety Assessment by in vivo Models,” Front Microbiol, vol. 12, Apr.

, doi: 10.3389/FMICB.2021.630695.

H. Chen, F. Tian, S. Li, Y. Xie, H. Zhang, and W. Chen, “Cloning and heterologous expression of a bacteriocin

sakacin P from Lactobacillus sakei in Escherichia coli,” Appl Microbiol Biotechnol, vol. 94, no. 4, pp. 1061–

, May 2012, doi: 10.1007/S00253-012-3872-Z

J. J. Jiménez et al., “Cloning strategies for heterologous expression of the bacteriocin enterocin A by

Lactobacillus sakei Lb790, Lb. plantarum NC8 and Lb. casei CECT475,” Microb Cell Fact, vol. 14, no. 1, pp.

–11, Oct. 2015, doi: 10.1186/S12934-015-0346-X.

R. Li, X. Wan, T. M. Takala, and P. E. J. Saris, “Heterologous Expression of the Leuconostoc Bacteriocin

Leucocin C in Probiotic Yeast Saccharomyces boulardii,” Probiotics Antimicrob Proteins, vol. 13, no. 1, pp.

–237, Feb. 2021, doi: 10.1007/S12602-020-09676-1.

C. A. Van Reenen, M. L. Chikindas, W. H. Van Zyl, and L. M. T. Dicks, “Characterization and heterologous

expression of a class IIa bacteriocin, plantaricin 423 from Lactobacillus plantarum 423, in Saccharomyces

cerevisiae,” Int J Food Microbiol, vol. 81, no. 1, pp. 29–40, Feb. 2003, doi: 10.1016/S0168-1605(02)00164-2.

J. M. Rodríguez, M. I. Martínez, N. Horn, and H. M. Dodd, “Heterologous production of bacteriocins by lactic

acid bacteria,” Int J Food Microbiol, vol. 80, no. 2, pp. 101–116, Jan. 2003, doi: 10.1016/S0168-1605(02)00153-

D. Dey et al., “ANTIVIRAL EFFECTS OF BACTERIOCIN AGAINST ANIMAL-TO-HUMAN TRANSMITTABLE

MUTATED SARS-COV-2: A SYSTEMATIC REVIEW,” Front Agric Sci Eng, vol. 8, no. 4, pp. 603–622, Dec. 2021,

doi: 10.15302/J-FASE-2021397