Análisis preliminar de la correlación de variables socioeconómicas con modelado geoespacial en la epidemia de dengue en Costa Rica
Contenido principal del artículo
Resumen
El dengue es una enfermedad transmitida por mosquitos que afecta a más de 5 millones de
personas en todo el mundo. Es endémica en más de 100 países y tiene presencia en los 5
continentes. Comprender la dinámica de las epidemias de dengue es crucial para reducir el
impacto masivo que tiene esta enfermedad en la salud pública. Sin embargo, el dengue es
un fenómeno complejo. Hay muchas variables que contribuyen a la propagación del virus y
la interconexión de esas variables no está clara. Nos propusimos explorar la correlación de
las variables socioeconómicas en las epidemias de dengue mediante el uso de un modelo
geoespacial. Nuestro estudio se centra en Costa Rica, país con afectación reiterada por el virus.
Encontramos una posible relación entre el número de casos de dengue y algunas variables
socioeconómicas (viviendas con tubería de agua, ubicación del trabajo), que abren las puertas
a considerar incluirlas en un modelo epidemiológico más sofisticado.
Detalles del artículo
Esta obra está bajo una licencia internacional Creative Commons Atribución-NoComercial-SinDerivadas 4.0.
Los autores conservan los derechos de autor y ceden a la revista el derecho de la primera publicación y pueda editarlo, reproducirlo, distribuirlo, exhibirlo y comunicarlo en el país y en el extranjero mediante medios impresos y electrónicos. Asimismo, asumen el compromiso sobre cualquier litigio o reclamación relacionada con derechos de propiedad intelectual, exonerando de responsabilidad a la Editorial Tecnológica de Costa Rica. Además, se establece que los autores pueden realizar otros acuerdos contractuales independientes y adicionales para la distribución no exclusiva de la versión del artículo publicado en esta revista (p. ej., incluirlo en un repositorio institucional o publicarlo en un libro) siempre que indiquen claramente que el trabajo se publicó por primera vez en esta revista.
Citas
G. Eason, B. Noble, and I. N. Sneddon, “On certain integrals of Lipschitz-Hankel type involving products of
Bessel functions,” Phil. Trans. Roy. Soc. London, vol. A247, pp. 529–551, April 1955.
World Health Organization, UNICEF, et al. Operational guide using the web-based dashboard: Early warning
and response system (ewars) fordengue outbreaks. 2020.
Ministerio de Salud. Situación epidemiológica dengue, chikungunya y zika del ministerio de salud. data
retrieved from: https://www.ministeriodesalud.go.cr/index. php/vigilancia-de-la-salud/analisis-de-situacion-desalud. 2021
Barrera R. Focks D. Dengue transmission dynamics: assessment and implications for control. In Report of the
scientific working group meeting on dengue, 1-5, pages 92–108. WHO, October 2006.
Rosen L. Rodhain F. Mosquito vectors and dengue virus-vector relation-ships. Dengue and dengue hemorrhagic fever, pages 45–60, 1997
Hwa-Lung Yu, Shang-Jen Yang, Hsin-Ju Yen, and George Christakos. A spatio-temporal climate-based model
of early dengue fever warning in southern taiwan. Stochastic Environ- mental Research and Risk Assessment,
(4):485–494, 2011
Christofer Åström, Joacim Rocklöv, Simon Hales, Andreas Béguin, Valerie Louis, and Rainer Sauerborn.
Potential distribution of dengue fever under scenarios of climate change and economic development.
Ecohealth, 9(4):448–454, 2012
Rachel Lowe, Bernard Cazelles, Richard Paul, and Xavier Rod ́o. Quantifying the added value of climate
information in a spatio-temporal dengue model. Stochastic Environmental Research and Risk Assessment,
(8):2067–2078, 2016.
Elodie Descloux, Morgan Mangeas, Christophe Eugène Menkes, Matthieu Lengaigne, Anne Leroy, Temaui
Tehei, Laurent Guillaumot, Magali Teurlai, Ann-Claire Gourinat, Justus Benzler, et al. Climate-based models
for understanding and forecasting dengue epidemics. PLoS neglected tropical diseases, 6(2):e1470, 2012.
Vivek Jason Jayaraj, Richard Avoi, Navindran Gopalakrishnan, Dhesi Baha Raja, and Yusri Umasa. Developing
a dengue prediction model based on climate in tawau, malaysia. Acta tropica, 197:105055, 2019.
M Hurtado-Díaz, H Riojas-Rodríguez, SJ Rothenberg, H Gomez-Dantés, and E Cifuentes. Impact of climate
variability on the incidence of dengue in Mexico. Tropical medicine & international health, 12(11):1327–1337,
Paola Vásquez, Antonio Loría, Fabio Sanchez, and Luis Alberto Barboza. Climate-driven statistical models as
efective predictions of local dengue indicence in costa rica: a generalized additive model and random forest
approach. Revista de Matemática: Teoría Y Aplicaciones, 27(1):1–21, 2020
Fabio Sanchez and Juan G Calvo. Dengue model with early-life stage of vectors and age- structure within host.
Revista de Matemática: Teoría y Aplicaciones, 27(1):157–177, 2020
Cory W Morin, Andrew C Comrie, and Kacey Ernst. Climate and dengue transmission: evidence and implications. Environmental health perspectives, 121(11-12):1264–1272, 2013.
Eric Delmelle, Michael Hagenlocher, Stefan Kienberger, and Irene Casas. A spatial model of socioeconomic
and environmental determinants of dengue fever in cali, colombia. Acta tropica, 164:169–176, 2016
Chris Brunsdon, A. Stewart Fotheringham and Martin E. Charlton. Geographically weighted regression: a
method for exploring spatial nonstationarity. Geographical analysis 28.4 (1996): 281-298.
Naqvi, Syed Ali Asad, et al. ”Integrating Spatial Modelling and Space–Time Pattern Mining Analytics for Vector
Disease-Related Health Perspectives: A Case of Dengue Fever in Pakistan.” International journal of environmental research and public health 18.22 (2021