Modelación computacional de la corrosión del refuerzo metálico de un concreto carbonatado

Contenido principal del artículo

Bruno Chine-Polito
Ronald Jiménez-Salas
Rommel Cuevas-Kauffmann

Resumen

En el sector civil de la construcción, el concreto y el refuerzo metálico representan aun los materiales de mayor importancia, aunque sean muy vulnerables por los agentes atmosféricos, como en el caso de su degradación por corrosión. En este artículo se presenta un trabajo de modelación computacional de la corrosión del refuerzo metálico de un concreto carbonatado, basado en datos experimentales de un proceso de carbonatación acelerada y sucesiva corrosión de las varillas metálicas. El modelo ha sido completado incorporando los datos cinéticos experimentales de las reacciones electroquímicas de los electrodos que están en relación con el avance del frente de carbonatación. A partir de los valores experimentales del potencial de corrosión, densidad de corriente de corrosión, pendientes anódicas y catódicas de la curva de Tafel, se estiman las corrientes de intercambio anódicas y catódicas y finalmente se simula la corrosión de las varillas metálicas de muestras de concreto reforzado.  


 

Detalles del artículo

Cómo citar
Chine-Polito, B., Jiménez-Salas, R., & Cuevas-Kauffmann, R. (2024). Modelación computacional de la corrosión del refuerzo metálico de un concreto carbonatado. Revista Tecnología En Marcha, 37(1), Pág. 51–64. https://doi.org/10.18845/tm.v37i1.6532
Sección
Artículo científico

Citas

ASCE, “Report card for America’s infrastructure”, American Society of Civil Engineers, Reston, VA, 2013.

X. Wang, M. Nguyen, M. Stewart, M. Syme and A. Leitch, “Analysis of climate change impacts on the deterioration of concrete infrastructure”. Part 1: Mechanisms, Practices, Modeling and Simulations - A Review, CSIRO, Canberra, 2010.

W. Hayden, W.G. Moffatt and J. Wulff, “The structure and properties of materials”, Vol. III Mechanical Behavior, John Wiley and Sons, New York, 1965.

Tuutti K., “Corrosion of steel in concrete”, Swedish Cement and Concrete Institute RIT-Stockholm, 1982.

V.G. Papadakis, C.G. Vayenas and M.N. Fardis, “A reaction engineering approach to the problem of concrete carbonation”, American Inst. of Chemical Engineers, 35, N.10, 1639-1650, 1989.

V.G. Papadakis, C.G. Vayenas and M.N. Fardis, “Experimental investigation and mathematical modeling of the concrete carbonation problem”, Chemical Engineering Science, 46, N.5/6, 1333-1338, 1991.

V.G. Papadakis, C.G Vayenas and M.N. Fardis, “Physical and chemical characteristics affecting the durability of concrete”, ACI Materials Journal, 88, N.2, 186-196, 1991.

V.G. Papadakis, M.N. Fardis and C.G. Vayenas, “Hydration and carbonation of pozzolanic cement”, ACI Materials Journal, 89, N.2, 119-130, 1992.

V.G. Papadakis, M.N. Fardis and C.G. Vayenas, “Effect of composition, environmental factors and cement-lime mortar coating on concrete carbonation”, Materials and Structures, 25, 293-304, 1992.

J.M. Chi, R. Huang and C.C. Yang, “Effects of carbonation on mechanical properties and durability of concrete using accelerated testing method”, Journal of marine science and technology, 10, N.1, 14-20, 2002.

N. Zhiguon and Y. Ri, “Experimental investigation of concrete carbonation under different conditions”, Study of Civil Engineering and Architecture (SCEA), 2, N.4, 114-117, 2013.

T.P. Hills, F. Gordon, N.H. Florin and P.S. Fennell, “Statistical analysis of the carbonation rate of concrete”, Cement and Concrete Research, 72, 98-107, 2015.

S. Imperatore, Z. Rinaldi and C. Drago, “Degradation relationships for the mechanical properties of corroded steel bars”, Construction and Building Materials, 148, 219-230, 2017.

Jaśniok M. and Jaśniok T., Evaluation of maximum and minimum corrosion rate of steel rebars in concrete structures, based on laboratory measurements on drilled cores, Procedia Engineering, 193, 486-493, 2017.

Z.P. Bazant, “Physical model for steel corrosion in concrete sea structures”, Journal of the structural division-Proceedings of the ASCE, 105, n. ST6, 1137-1153, June 1979.

T. Maruya, K. Hsu, H. Takeda and S. Tangtermsirikul, “Numerical modeling of steel corrosion in concrete structures due to chloride ion, oxygen and water movement”, Journal of advanced concrete technology, 1, N.2, 147-160, 2003.

B. Huet, V. L’Hostis, G. Santarini, D. Feron and H. Idrissi, “Steel corrosion in concrete: deterministic modeling of cathodic reaction as a function of water saturation degree”, Corrosion Science, 49, 1918-1932, 2007.

P. Dangla and W. Wridi, “Rebar corrosion in carbonated concrete exposed to variable humidity conditions. Interpretation of Tuutti’s curve”, Corrosion Science, 51, 1747-1756, 2009.

R.R. Hussain and T. Ishida, “Development of numerical model for FEM computation of oxygen transport through porous media coupled with micro-cell corrosion model of steel in concrete structure”, Computers and Structures, 88, 639-647, 2010.

M.I. Prieto, A. Cobo, A. Rodriguez and V.Calderón, “Corrosion behavior of reinforcement bars embedded in mortar specimens containing ladle furnace slag in partial substitution of aggregate and cement”, Construction and Building Materials, 38, 188-194, 2013.

T.T.H. Nguyen, B. Bary and T. de Larrard, “Coupled carbonation-rust formation-damage modeling and simulation of steel corrosion in 3D mesoscale reinforced concrete”, Cement and Concrete Research, 74, 95-107, 2015.

R.A. Robayo-Salazar, A.M. Aguirre-Guerrero and R. Mejia de Gutierrez, “Carbonation-induced corrosion of alkali-activated binary concrete based on natural volcanic pozzolan”, Construction and Building Materials, 232, 117189, 2020.

N. Murer, N. Missert and R. Buchheit, “Towards the modeling of microgalvanic corrosion in aluminum alloys: the choice of boundary conditions”, Proceedings of the Comsol Users Conference, Boston (USA), 2008.

C.Y. Kim and J.K Kim, “Numerical analysis of localized steel corrosion in concrete”, Construction and Building Materials, 22, 1129-1136, 2018.

M. Jaśniok and A. Zybura, “Modeling the carbonated concrete realkanilization”, Journal of civil engineering and management, 15, N.2, 159-168, 2009.

P. Ghods, K. Karadakis, O.B. Isgor and G. McRae, “Modeling the chloride-induced corrosion initiation of steel rebar in concrete”, Proceedings of the Comsol Conference 2009 Boston, Boston, Ma, 2009.

L.T.N. Dao, V.T.N. Dao, S.H. Kim and K.Y. Ann “Modeling steel corrosion in concrete structures- Part 1: A new inverse relation between current density and potential for the cathodic reaction”, International Journal of Electrochemical Science, 5, 302-313, 2010.

L.T.N. Dao, V.T.N. Dao, S.H. Kim and K.Y. Ann, “Modeling steel corrosion in concrete structures- Part 2: A unified adaptive finite element method for simulation of steel corrosion”, International Journal of Electrochemical Science, 5, 314-326, 2010.

Y. Lu, E. Garboczi, D. Bentz and J. Davis, “Modeling the chloride transport in cracked concrete: a 3D image-based microstructure simulation”, Proceedings of the Comsol Conference 2012 Boston, Boston, Ma, 2012.

M.G. Sohail, “Corrosion of steel in concrete: Development of an accelerated test by carbonation and galvanic coupling”, PhD thesis, Université de Toulouse, 2013.

C. Cao, “3D simulation of localized steel corrosion in chloride contaminated reinforced concrete”, Construction and Building Materials, 72, 434-443, 2014.

I. Fernandez, J.M. Bairán and A.R. Marí, “3D FEM model development from 3D optical measurement technique applied to corroded steel bars”, Construction and Building Materials, 124, 519-532, 2016.

A. Michel, M. Otieno, H. Stang and M.R. Geiker, “Propagation of steel corrosion in concrete: Experimental and numerical investigations”, Cement and Concrete Composites, 70, 171-182, 2016.

M. Yu, H. Bao, J. Ye and Y. Chi, “The effect of random porosity field on supercritical carbonation of cement-based materials”, Construction and Building Materials, 146, 144-155, 2017.

J. Zhang, X. Ling and Z. Guan, “Finite element modeling of concrete cover crack propagation due to non-uniform corrosion of reinforcement”, Construction and Building Materials, 132, 487-499, 2017.

W. Mai and S. Soghrati, “ New phase field model for simulating galvanic and pitting corrosion processes”, Electrochimica Acta, 260, 290-304, 2018.

F. Babaghayou, B. Zegnini and T. Seghier, “Numerical study and remediation of AC interference corrosion on neighboring pipelines”, Journal of Engineering Science and Technology, 13, N.7, 2047-2064, 2018.

D. Boukhlef, D. Boughrara and H. Mohellebi, “Simulation of border deformation in corrosion system by coupling analytical solution and finite element method”, Journal of Materials and Engineering Structures, 5, 267-277, 2018.

J. Xia, T. Li, J. Fang and W. Jin, “Numerical simulation of steel corrosion in chloride contaminated concrete”, Construction and Building Materials, 228, 116745, 2019.

C. Liu and R.G. Kelly, “A review of the application of finite element method (FEM) to localized corrosion modeling”, Corrosion Journal Org., 75, Issue 11, 1285-1299, 2019.

N. Seigneur, E. Kangni-Foli, V. Lagneau, A. Dauzeres, S. Poyet, P. Le Bescop, E. L’Hopital and J.B. d’Espinose de Lacaillerie, “Predicting the atmospheric carbonation of cementitious materials using fully coupled two-phase reactive transport modelling”, Cement and Concrete Research, 130, 105966, 2020. https://doi.org/10.1016/j.cemconres.2019.105966

P. Liu, Z. Yu and Y. Chen, “Carbonation depth model and carbonated acceleration rate of concrete under different environment”, Cement and Concrete Composites, 114, 103736, 2020. https://doi.org/10.1016/j.cemconcomp.2020.103736

Y. Yu, W. Gao, A. Castel, A. Liu, Y. Feng, X. Chen and A. Mukherjee, “Modelling steel corrosion under concrete non-uniformity and structural defects”, Cement and Concrete Research, 135, 106109, 2020. https://doi.org/10.1016/j.cemconres.2020.106109

D.A. Jones, “Principles and prevention of corrosion”, 2nd Ed., Macmillian Publishing Company, New York, 1992.

B. Chiné, R. Jimenez and R. Cuevas, “Corrosión del concreto reforzado y DEgradación de sus propiedades MECánicas (CODE_MEC2): Etapa 2 Estudio experimental y modelación computacional de la carbonatación y corrosión del concreto reforzado”, código 1490020, Informe Final, Dirección de Proyectos VIE, ITCR, 2021.

Comsol AB, Corrosion Module, User’s Guide, Version 5.4, 2018.

Artículos más leídos del mismo autor/a