Evaluando la unidad de procesamiento neuronal NXP i.MX8M+: el caso de estudio de parqueos inteligentes
Contenido principal del artículo
Resumen
Actualmente, el aprendizaje profundo se ha convertido en una de las soluciones más populares para la visión por computador y ha incluido también el Edge. Esto ha influenciado a los productores de System-on-Chip (SoC) a integrar aceleradores para tareas de inferencia en sus SoC, incluyendo a NVIDIA, NXP y Texas Instruments. En este trabajo se explora el rendimiento de la unidad de procesamiento neuronal (NPU) de la NXP i.MX8M Plus como una de las soluciones de tareas de inferencia. Para las mediciones de desempeño, proponemos un experimento basado en un pipeline de GStreamer para la inferencia de placas de vehículos, el cual consta de dos etapas: la detección de placas y la inferencia de sus caracteres. Para ello, este benchmark toma muestras de tiempos de ejecución y uso de CPU dentro de sus muestras cuando se corre la ejecución de la inferencia de manera serial y paralela. Los resultados obtenidos demuestran que el beneficio en el uso del NPU radica en la liberación del CPU para otras tareas. Después de descargar la detección de placas al NPU, reducimos el consumo total de CPU 10 veces. El desempeño obtenido tiene una tasa de inferencia de 1 Hz, limitado por la inferencia de caracteres.
Detalles del artículo
Esta obra está bajo una licencia internacional Creative Commons Atribución-NoComercial-SinDerivadas 4.0.
Los autores conservan los derechos de autor y ceden a la revista el derecho de la primera publicación y pueda editarlo, reproducirlo, distribuirlo, exhibirlo y comunicarlo en el país y en el extranjero mediante medios impresos y electrónicos. Asimismo, asumen el compromiso sobre cualquier litigio o reclamación relacionada con derechos de propiedad intelectual, exonerando de responsabilidad a la Editorial Tecnológica de Costa Rica. Además, se establece que los autores pueden realizar otros acuerdos contractuales independientes y adicionales para la distribución no exclusiva de la versión del artículo publicado en esta revista (p. ej., incluirlo en un repositorio institucional o publicarlo en un libro) siempre que indiquen claramente que el trabajo se publicó por primera vez en esta revista.
Citas
"i.MX8M Plus”, Nxp.com, 2021. [Online]. Available: https://www.nxp.com/products/processors-and-microcontrollers/arm-processors/i-mx-applications-processors/i-mx-8-processors/i-mx-8m-plus-arm-cortex-a53-machine-learning-vision-multimedia-and-industrial-iot:IMX8MPLUS. [Accessed: 22- Sep- 2021].
NVIDIA. 2014. DATA SHEET NVIDIA Jetson Nano System-on-Module. [Online]. Available: https://developer. nvidia.com/embedded/jetson-nano [Accesed: 22- Mar- 2022]
H. Bouzidi, H. Ouarnoughi, S. Niar, and S. Ait El Cadi. 2022. Performances Modeling of Computer Vision-based CNN on Edge GPUs. ACM Trans. Embed. Comput. Syst. DOI: https://doi.org/10.1145/3527169
“GstInference Benchmarks”, RidgeRun Embedded Solutions LLC. [Online]. Available: https://developer.ridgerun.com/wiki/index.php?title=GstInference/Benchmarks. [Accessed: 14- Sep- 2021].
“Introduction to GstInference”, developer.ridgerun.com. [Online]. Available: https://developer.ridgerun.com/ wiki/index.php?title=GstInference/Introduction. [Accessed: 20- Oct- 2021].
“Neural Networks API | Android NDK | Android Developers”, Android Developers. [Online]. Available: https:// developer.android.com/ndk/guides/neuralnetworks. [Accessed: 09- Sep- 2021].
V. Sivakumar, A. Gordo and M. Paluri, “Rosetta: Understanding text in images and videos with machine learning”, Facebook Engineering, 2021. [Online]. Available: https://engineering.fb.com/2018/09/11/ai-research/ rosetta-understanding-text-in-images-and-videos-with-machine-learning/. [Accessed: 20- Sep- 2021].
“GStreamer: open source multimedia framework”, Gstreamer.freedesktop.org. [Online]. Available: https:// gstreamer.freedesktop.org/. [Accessed: 14- Sep- 2021].