Remoción de parámetros fisicoquímicos y microbiológicos de plantas de tratamiento de aguas residuales del Gran Área Metropolitana, Costa Rica
Contenido principal del artículo
Resumen
Las aguas residuales inadecuadamente tratadas son un factor de riesgo para la salud pública dado que son un vehículo de diseminación de microorganismos patógenos como virus entéricos. Sin embargo, la circulación de patógenos virales en esta matriz ha sido poco estudiada en la región. El objetivo de este trabajo fue describir la presencia de cinco virus enteropatógenos y parámetros operativos básicos, en afluentes y efluentes de cinco plantas de tratamiento de aguas residuales (PTAR) con sistemas de lodos activados, ubicadas en el Gran Área Metropolitana de Costa Rica durante el 2013. Los patógenos virales estudiados fueron: enterovirus, virus de hepatitis A, rotavirus A, norovirus G1 y norovirus G2 (determinados por PCR punto final); mientras que los parámetros de control de rendimiento analizados incluyeron disponibilidad bioquímica de oxígeno, disponibilidad química de oxígeno, sólidos suspendidos, sólidos sedimentables, grasas y aceites, sustancias activas al azul de metileno y coliformes fecales. A nivel fisicoquímico todas las plantas mostraron un rendimiento aceptable, caso contrario a los parámetros microbiológicos, todos los virus investigados fueron detectados en aguas tratadas y no tratadas durante todo el año, siendo más frecuentes durante la época seca. El virus más frecuente fue rotavirus, seguido por norovirus G1. En conclusión, este estudio describe que durante el periodo estudiado las PTAR fueron eficientes en la remoción de parámetros fisicoquímicos, y que la circulación de virus entéricos es común en las PTAR estudiadas. Por ello, es necesaria la inclusión de procesos de desinfección adicionales para una descarga segura de las aguas tratadas.
Detalles del artículo
Esta obra está bajo una licencia internacional Creative Commons Atribución-NoComercial-SinDerivadas 4.0.
Los autores conservan los derechos de autor y ceden a la revista el derecho de la primera publicación y pueda editarlo, reproducirlo, distribuirlo, exhibirlo y comunicarlo en el país y en el extranjero mediante medios impresos y electrónicos. Asimismo, asumen el compromiso sobre cualquier litigio o reclamación relacionada con derechos de propiedad intelectual, exonerando de responsabilidad a la Editorial Tecnológica de Costa Rica. Además, se establece que los autores pueden realizar otros acuerdos contractuales independientes y adicionales para la distribución no exclusiva de la versión del artículo publicado en esta revista (p. ej., incluirlo en un repositorio institucional o publicarlo en un libro) siempre que indiquen claramente que el trabajo se publicó por primera vez en esta revista.
Citas
Ministerio de Ambiente y Energía (MINAE), Reglamento de vertido y reuso de aguas residuales. Costa Rica, 2007, p. 56. [Online]. Available: http://www.digeca.go.cr/sites/default/files/reglamento_vertido_reuso_aguas_residuales_0.pdf
L. Chacón, L. Reyes, L. Rivera-Montero, and K. Barrantes, “Transport, fate, and bioavailability of emerging pollutants in soil, sediment, and wastewater treatment plants: potential environmental impacts,” in Emerging Contaminants in the Environment, vol. 15, no. 2, Elsevier, 2022, pp. 111–136. doi: 10.1016/B978-0-323-85160-2.00020-2.
L. M. Chacón Jiménez, K. Hall Loría, P. C. Rivera Navarro, L. Reyes Lizano, R. Achí Araya, and K. Barrantes Jiménez, “Circulación de genes de virulencia asociados a Escherichia coli diarrogénica en aguas residuales del Gran Área Metropolitana de Costa Rica,” Población y Salud en Mesoamérica, vol. 19, no. 19, Nov. 2021, doi: 10.15517/psm.v19i2.48037.
World Health Organization, “WHO Guidelines for the safe use of wastewater, excreta and greywater in Agriculture,” WHO Library Cataloguing-in-Publication Data, vol. IV. World Health Organization, Geneva, p. 204, 2006. [Online]. Available: https://www.who.int/water_sanitation_health/publications/gsuweg4/en/
Contraloría General de la República, “Informe acerca de la eficacia del Estado para garantizar la calidad del agua en sus diferentes usos,” Costa Rica, 2013. [Online]. Available: https://cgrfiles.cgr.go.cr/publico/jaguar/sad_docs/2013/DFOE-AE-IF-01-2013.pdf
W. Randazzo, P. Truchado, E. Cuevas-Ferrando, P. Simón, A. Allende, and G. Sánchez, “SARS-CoV-2 RNA in wastewater anticipated COVID-19 occurrence in a low prevalence area,” Water Res., vol. 181, 2020, doi: 10.1016/j.watres.2020.115942.
B. Prevost, F. S. Lucas, A. Goncalves, F. Richard, L. Moulin, and S. Wurtzer, “Large scale survey of enteric viruses in river and waste water underlines the health status of the local population,” Environ. Int., vol. 79, pp. 42–50, 2015, doi: 10.1016/j.envint.2015.03.004.
M. Bisseux et al., “Monitoring human enteric viruses in wastewater and relevance to infections encountered in the clinical setting: A one-year experiment in central France, 2014 to 2015,” Eurosurveillance, vol. 23, no. 7, pp. 1–11, 2018, doi: 10.2807/1560-7917.ES.2018.23.7.17-00237.
U.S. Environmental Protection Agency, “Guidelines for Water Reuse,” U.S. Environmental Protection Agency National Risk Management Research Laboratory U.S. Agency for International Development, no. September. Washington, DC, United States of America, p. 643, 2012. [Online]. Available: https://www3.epa.gov/region1/npdes/merrimackstation/pdfs/ar/AR-1530.pdf
T.-T. Fong and E. K. Lipp, “Enteric Viruses of Humans and Animals in Aquatic Environments: Health Risks, Detection, and Potential Water Quality Assessment Tools,” Microbiol. Mol. Biol. Rev., vol. 69, no. 2, pp. 357–371, Jun. 2005, doi: 10.1128/MMBR.69.2.357-371.2005.
C. N. Haas, J. B. Rose, C. Gerba, and S. Regli, “Risk Assessment of Virus in Drinking Water,” Risk Anal., vol. 13, no. 5, pp. 545–552, Oct. 1993, doi: 10.1111/j.1539-6924.1993.tb00013.x.
F. Ruiz Fallas, “‘Gestión de las Excretas y Aguas Residuales en Costa Rica’ Situación Actual y Perspectiva,” San José, 2012. [Online]. Available: https://www.aya.go.cr/centroDocumetacion/catalogoGeneral/Gestión de las Excretas y Aguas Residuales en Costa Rica Situación Actual y Perspectiva.pdf
L. Zúñiga Zúñiga, E. Alfaro Arrieta, and I. Vega Guzmán, “Informe anual Aguas Residuales: Resultados sobre calidad de aguas residuales en los sistemas de tratamiento operados y asministrados por el AyA, aguas superficiales y estudios especiales,” La Unión, 2019. [Online]. Available: http://dspace-aya.eastus.cloudapp.azure.com:8080/xmlui/handle/aya/375
C. Naughton and O. Rousselot, “Activated Sludge,” in Global Water Pathogen Project, 1st ed., J. Mihelcic and M. Verbyla, Eds. Michigan: Michigan State University, 2017. doi: 10.14321/waterpathogens.62.
(American Public Health Asociation) APHA, (American Water Works Association) AWWA, and (Water Environment Federation) WEF, Standard Methods for the examination of water and wastewater, 21st ed. Washington, DC: American Public Health Association, 2005.
L. Chacón et al., “A Somatic Coliphage Threshold Approach To Improve the Management of Activated Sludge Wastewater Treatment Plant Effluents in Resource-Limited Regions,” Appl. Environ. Microbiol., vol. 86, no. 17, pp. e00616-20, Jun. 2020, doi: 10.1128/AEM.00616-20.
B. R. McMinn, N. J. Ashbolt, and A. Korajkic, “Bacteriophages as indicators of fecal pollution and enteric virus removal,” Lett. Appl. Microbiol., vol. 65, no. 1, pp. 11–26, 2017, doi: 10.1111/lam.12736.
R. Sivaraja and K. Nagarajan, “Levels of Indicator Microorganisms (Total and Fecal Coliforms) in Surface waters of rivers Cauvery and Bhavani for Circuitously predicting the Pollution load and Pathogenic risks,” Int. J. PharmTech Res., vol. 6, no. 2, pp. 455–461, 2014, [Online]. Available: http://sphinxsai.com/2014/PTVOL6/PT=07(455-461)AJ14.pdf
J. N. Edokpayi, J. O. Odiyo, and O. S. Durowoju, “Impact of Wastewater on Surface Water Quality in Developing Countries: A Case Study of South Africa,” in Water Quality, vol. 11, no. tourism, InTech, 2017, p. 13. doi: 10.5772/66561.
T. Ito et al., “Evaluation of virus reduction efficiency in wastewater treatment unit processes as a credit value in the multiplebarrier system for wastewater reclamation and reuse,” J. Water Health, vol. 14, no. 6, pp. 879–889, 2016, doi: 10.2166/wh.2016.096.
I. Vega Guzman, E. Arfaro Arrieta, and C. Mora Aparicio, “Evaluación de la Eficiencia de los Sistemas de Tratamiento de Aguas Residuales 2021,” Pavas, 2022.
T. da Silva Poló et al., “Human norovirus infection in Latin America,” J. Clin. Virol., vol. 78, pp. 111–119, May 2016, doi: 10.1016/j.jcv.2016.03.016.
E. M. Kane, R. M. Turcios, M. L. Arvay, S. Garcia, J. S. Bresee, and R. I. Glass, “The epidemiology of rotavirus diarrhea in Latin America: anticipating rotavirus vaccines,” Rev. Panam. Salud Pública, vol. 16, no. 6, pp. 371–377, 2004, doi: 10.1590/s1020-49892004001200002.
P. Arauz-Ruiz et al., “Presumed Common Source Outbreaks of Hepatitis A in an Endemic Area Confirmed by Limited Sequencing Within the VP1 Region,” J. Med. Virol., vol. 65, pp. 449–456, 2001.
L. E. Zambrana et al., “Etiology of Childhood Diarrhea After Rotavirus Vaccine Introduction,” Pediatr. Infect. Dis. J., vol. 33, no. 11, pp. 1156–1163, 2014, doi: 10.1097/inf.0000000000000427.
L. Bourdett-Stanziola, E. Ortega-Barria, F. Espinoza, F. Bucardo, C. Jimenez, and A. Ferrera, “Rotavirus Genotypes in Costa Rica, Nicaragua, Honduras and the Dominican Republic,” Intervirology, vol. 54, no. 1, pp. 49–52, 2011, doi: 10.1159/000318863.
A. Espinoza, “Comportamiento de la enfermedad diarreica en Costa Rica, de 1995 al 2001,” Rev. Costarric. Salud Pública, vol. 13, no. 24, 2004.
L. Chacón Jiménez et al., “Relación entre la presencia de colifagos en agua para consumo humano, las lluvias y las diarreas agudas en Costa Rica,” Rev. Costarric. Salud Pública, vol. 24, no. 2, pp. 161–168, 2015, [Online]. Available: https://www.scielo.sa.cr/scielo.php?script=sci_abstract&pid=S1409-14292015000200160&lng=en&nrm=iso
L. Chacon, E. Morales, C. Valiente, L. Reyes, and K. Barrantes, “Wastewater-Based Epidemiology of Enteric Viruses and Surveillance of Acute Gastrointestinal Illness Outbreaks in a Resource-Limited Region,” Am. J. Trop. Med. Hyg., no. 1, 2021, doi: 10.4269/ajtmh.21-0050.
N. Sims and B. Kasprzyk-Hordern, “Future perspectives of wastewater-based epidemiology: Monitoring infectious disease spread and resistance to the community level,” Environ. Int., vol. 139, no. March, p. 105689, Jun. 2020, doi: 10.1016/j.envint.2020.105689.
M. Rusiñol and R. Girones, “Summary of Excreted and Waterborne Viruses,” in Global Water Pathogen Project, J. S. Meschke and R. Girones, Eds. Michigan State University, 2019, pp. 3–10. doi: 10.14321/waterpathogens.19.
T. Aw, “Environmental Aspects and Features of Critical Pathogen Groups,” in Global Water Pathogen Project, J. Rose and B. Jiménez-Cisneros, Eds. Michigan State University, 2019, pp. 1–22. doi: 10.14321/waterpathogens.2.
E. M. Symonds, M. E. Verbyla, J. O. Lukasik, R. C. Kafle, M. Breitbart, and J. R. Mihelcic, “A case study of enteric virus removal and insights into the associated risk of water reuse for two wastewater treatment pond systems in Bolivia,” Water Res., vol. 65, pp. 257–270, Nov. 2014, doi: 10.1016/j.watres.2014.07.032.