Diseño de un biorreactor tipo tanque agitado para el crecimiento de Rhodococcus opacus

Contenido principal del artículo

Pablo Bogantes-Portuguez

Resumen

En este artículo se presenta el diseño de un biorreactor de tipo tanque agitado asistido por microcontrolador utilizando conceptos de simplicidad de uso, modularidad, estética y ergonomía, según las necesidades de la empresa Cibus 3.0. El tanque cuenta con tres partes principales tapa, dispone sus elementos según su uso; caja de sensores, dispositivo que utiliza sensores de pH, temperatura y turbidez del medio; y tanque, con una capacidad volumétrica de 21.5 L. Se acopló un vaporizador de mano genérico como método de esterilización in situ. Para evaluar la eficiencia de esterilización se realizaron muestreos superficiales en las zonas más críticas de formación de biofilms (tapa, tubos, pared, impulsor y flecha), tras fermentaciones de E. coli y R. opacus. Se demostró que la máquina de vapor no cumple con el objetivo de eliminar la contaminación, logrando una esterilización del 92%. Sin embargo, el uso de autoclave permitió el rendimiento esperado de esterilización, esto se comprobó al realizar simulaciones de fermentación con medio estéril y no presentar contaminación al finalizar el ensayo. Se determinó la posibilidad de utilizar sensores de pH, sólidos suspendidos y temperatura tomando parte del medio para cada repetición sin afectar la inocuidad del sistema. De esta manera se introduce un dispositivo capaz de tomar las mediciones por medio de microcontrolador. Con el fin de corroborar la funcionalidad del equipo diseñado, se realizaron tres fermentaciones con la bacteria R. opacus, donde se obtuvieron curvas de crecimiento validando el funcionamiento del diseño alrededor del usuario y del proceso.

Detalles del artículo

Cómo citar
Bogantes-Portuguez, P. (2022). Diseño de un biorreactor tipo tanque agitado para el crecimiento de Rhodococcus opacus. Revista Tecnología En Marcha, 35(3), Pág. 141–157. https://doi.org/10.18845/tm.v35i3.5653
Sección
Artículo científico

Citas

J. S. Alford, “Bioprocess control: Advances and challenges,” Computers and Chemical Engineering, vol. 30, no. 10–12, pp. 1464–1475, Sep. 2006, doi: 10.1016/j.compchemeng.2006.05.039.

A. Kumar Das and R. Mohanty, “A Review on the Production and Optimal Use of Ethyl Alcohol as a Surrogate Fuel in IC Engines Extracted From Organic Materials,” Indian J.Sci.Res, vol. 15, no. 2, pp. 46–52, 2017, Accessed: Dec. 21, 2019. [Online]. Available: https://www.researchgate.net/publication/320623386.

F. Muhammad Anjum, R. Muhammad Amir, and M. Rafiq Khan, “An overview of anti-nutritional factors in cereal grains with special reference to wheat-A review,” 2010, Accessed: Dec. 21, 2019. [Online]. Available: https://www.researchgate.net/publication/233816063.

L. Thi Tam, Y. Jun, and L. MinWon, “Anti-Inflammatory and Anti-Oxidative Activities of Phenolic Compounds from Alnus sibirica Stems Fermented by Lactobacillus plantarum subsp. argentoratensis,” Molecules, vol. 22, no. 9, p. 1566, Sep. 2017, doi: 10.3390/molecules22091566.

S. Xia et al., “A critical review on bioremediation technologies for Cr(VI)-contaminated soils and wastewater,” Critical Reviews in Environmental Science and Technology, vol. 49, no. 12, pp. 1027–1078, Jun. 2019, doi: 10.1080/10643389.2018.1564526.

Ł. Ławniczak, M. Woźniak-Karczewska, A. P. Loibner, H. J. Heipieper, and Ł. Chrzanowski, “Microbial Degradation of Hydrocarbons—Basic Principles for Bioremediation: A Review,” Molecules, vol. 25, no. 4, p. 856, Feb. 2020, doi: 10.3390/molecules25040856.

Y. W. Chin, W. K. Kang, H. W. Jang, T. L. Turner, and H. J. Kim, “CAR1 deletion by CRISPR/Cas9 reduces formation of ethyl carbamate from ethanol fermentation by Saccharomyces cerevisiae,” Journal of Industrial Microbiology and Biotechnology, vol. 43, no. 11, pp. 1517–1525, Nov. 2016, doi: 10.1007/s10295-016-1831-x.

S. Jaiswal, D. K. Singh, and P. Shukla, “Gene editing and systems biology tools for pesticide bioremediation: A review,” Frontiers in Microbiology, vol. 10, no. FEB, p. 87, Feb. 2019, doi: 10.3389/fmicb.2019.00087.

G. Banerjee and P. Chattopadhyay, “Vanillin biotechnology: the perspectives and future,” Journal of the Science of Food and Agriculture, vol. 99, no. 2, pp. 499–506, Jan. 2019, doi: 10.1002/jsfa.9303.

L. Londoño-Hernandez, G. Bolívar, and C. Ramírez, “Effect of solid state fermentation with Rhizopus oryzae on biochemical and structural characteristics of sorghum (Sorghum bicolor (L.) Moench),” Intl. J. Food. Ferment. Technol, vol. 8, no. 1, pp. 27–36, 2018, doi: 10.30954/2277-9396.01.2018.4.

E. Carsanba, S. Papanikolaou, P. Fickers, B. Agirman, and H. Erten, “Citric Acid Production by Yarrowia lipolytica,” in Non-conventional Yeasts: from Basic Research to Application, Springer International Publishing, 2019, pp. 91–117.

D. A. Rzechonek, A. Dobrowolski, W. Rymowicz, and A. M. Mirończuk, “Aseptic production of citric and isocitric acid from crude glycerol by genetically modified Yarrowia lipolytica,” Bioresource Technology, vol. 271, pp. 340–344, Jan. 2019, doi: 10.1016/j.biortech.2018.09.118.

M. Cao, J. Feng, S. Sirisansaneeyakul, C. Song, and Y. Chisti, “Genetic and metabolic engineering for microbial production of poly-γ-glutamic acid,” Biotechnology Advances, vol. 36, no. 5. Elsevier Inc., pp. 1424–1433, Sep. 2018, doi: 10.1016/j.biotechadv.2018.05.006.

S. Sirisansaneeyakul, M. Cao, N. Kongklom, C. Chuensangjun, Z. Shi, and Y. Chisti, “Microbial production of poly-γ-glutamic acid,” World Journal of Microbiology and Biotechnology, vol. 33, no. 9. Springer Netherlands, Sep. 2017, doi: 10.1007/s11274-017-2338-y.

A. Schievano et al., “Electro-Fermentation – Merging Electrochemistry with Fermentation in Industrial Applications,” Trends in Biotechnology, vol. 34, no. 11. Elsevier Ltd, pp. 866–878, Nov. 01, 2016, doi: 10.1016/j.tibtech.2016.04.007.

M. Tolosa, W. Chandler, D. Koebler, J. Cremonese, and B. March, “Apparatus for Detecting pH and Dissolved Oxygen US20190250103A1,” 2019. Accessed: Feb. 01, 2020. [Online].

D. K. Rajan et al., “Monitoring pH, temperature and humidity in long-term stem cell culture in CO2 incubator,” in 2017 IEEE International Symposium on Medical Measurements and Applications, MeMeA 2017 - Proceedings, Jul. 2017, pp. 470–474, doi: 10.1109/MeMeA.2017.7985922.

C. McBeth, R. al Dughaishi, A. Paterson, and D. Sharp, “Ubiquinone modified printed carbon electrodes for cell culture pH monitoring,” Biosensors and Bioelectronics, vol. 113, pp. 46–51, Aug. 2018, doi: 10.1016/j.bios.2018.04.052.

E. P. Solomon, L. R. Berg, and D. W. Martin, Biología (9a. ed.)., vol. Novena Edi. CENGAGE Learning, 2013.

A. M. Vazquez-Marquez et al., “Effect of stirring speed on the production of phenolic secondary metabolites and growth of Buddleja cordata cells cultured in mechanically agitated bioreactor,” Plant Cell, Tissue and Organ Culture, vol. 139, no. 1, pp. 155–166, Oct. 2019, doi: 10.1007/s11240-019-01673-9.

P. O’Mara, A. Farrell, J. Bones, and K. Twomey, “Staying alive! Sensors used for monitoring cell health in bioreactors,” Talanta, vol. 176. Elsevier B.V., pp. 130–139, Jan. 01, 2018, doi: 10.1016/j.talanta.2017.07.088.

A. ; Hasanzadeh, H. ; Junicke, and K. v Gernaey, “General rights Electrochemical biosensors for in-situ monitoring of stress responses in large bioreactors,” 2019. Accessed: Dec. 27, 2019. [Online].

C. Klinger and U. Becken, “PH Sensor Recalibration Based on Exhaust CO 2 Concentration,” Genetic Engineering and Biotechnology News, vol. 38, no. 15, pp. 24–25, Sep. 2018, doi: 10.1089/gen.38.15.07.

N. Udom, P. Chansongkrow, V. Charoensawan, and C. Auesukaree, “Coordination of the cell wall integrity and highosmolarity glycerol pathways in response to ethanol stress in Saccharomyces cerevisiae,” Applied and Environmental Microbiology, vol. 85, no. 15, 2019, doi: 10.1128/AEM.00551-19.

C. L. Cooney, “Bioreactors: Design and operation,” Science, vol. 219, no. 4585. pp. 728–733, 1983, doi: 10.1126/science.219.4585.728.

D. Soletto, L. Binaghi, A. Lodi, J. C. M. Carvalho, and A. Converti, “Batch and fed-batch cultivations of Spirulina platensis using ammonium sulphate and urea as nitrogen sources,” Aquaculture, vol. 243, no. 1–4, pp. 217–224, Jan. 2005, doi: 10.1016/j.aquaculture.2004.10.005.

N. Pérez-Rodríguez, R. Pinheiro de Souza, A. M. Torrado, and J. M. Domínguez, “Ferulic acid transformation into the main vanilla aroma compounds by Amycolatopsis sp. ATCC 39116,” Applied Microbiology and Biotechnology, vol. 100, no. 4, pp. 1677–1689, Feb. 2016, doi: 10.1007/s00253-015-7005-3.

S. Liu, Bioprocess Engineering: Kinetics, Sustainability, and Reactor Design: Second Edition. Elsevier Inc., 2016.

G. T. Benz, “Bioreactor Design for Chemical Engineers - BioreactorDesignForChEs.pdf,” no. August, pp. 21–26, 2011.

W. R. Finnerty, “The Biology and Genetics of the Genus Rhodococcus,” Annual Review of Microbiology, vol. 46, no. 1, pp. 193–218, Oct. 1992, doi: 10.1146/annurev.mi.46.100192.001205.

M. Majidzadeh and M. Fatahi-Bafghi, “Current taxonomy of Rhodococcus species and their role in infections,” European Journal of Clinical Microbiology and Infectious Diseases, vol. 37, no. 11. Springer Verlag, pp. 2045–2062, Nov. 01, 2018, doi: 10.1007/s10096-018-3364-x.

S. R. Subashchandrabose, K. Venkateswarlu, R. Naidu, and M. Megharaj, “Biodegradation of high-molecular weight PAHs by Rhodococcus wratislaviensis strain 9: Overexpression of amidohydrolase induced by pyrene and BaP,” Science of the Total Environment, vol. 651, pp. 813–821, Feb. 2019, doi: 10.1016/j.scitotenv.2018.09.192.

S. R. Subashchandrabose, K. Venkateswarlu, K. Krishnan, R. Naidu, R. Lockington, and M. Megharaj, “Rhodococcus wratislaviensis strain 9: An efficient p-nitrophenol degrader with a great potential for bioremediation,” Journal of Hazardous Materials, vol. 347, pp. 176–183, Apr. 2018, doi: 10.1016/j.jhazmat.2017.12.063.

W. E. Anthony et al., “Development of Rhodococcus opacus as a chassis for lignin valorization and bioproduction of high-value compounds,” Biotechnology for Biofuels, vol. 12, no. 1. BioMed Central Ltd., pp. 1–14, Aug. 05, 2019, doi: 10.1186/s13068-019-1535-3.

J. Czajka, Q. Wang, Y. Wang, and Y. J. Tang, “Synthetic biology for manufacturing chemicals: constraints drive the use of non-conventional microbial platforms,” Applied Microbiology and Biotechnology, vol. 101, no. 20. Springer Verlag, pp. 7427–7434, Oct. 01, 2017, doi: 10.1007/s00253-017-8489-9.

M. S. Kuyukina and I. B. Ivshina, “Application of Rhodococcus in Bioremediation of Contaminated Environments,” 2010, pp. 231–262.

G. W. Roell et al., “A concerted systems biology analysis of phenol metabolism in Rhodococcus opacus PD630,” Metabolic Engineering, vol. 55, pp. 120–130, Sep. 2019, doi: 10.1016/j.ymben.2019.06.013.

K. Kurosawa, P. Boccazzi, N. M. de Almeida, and A. J. Sinskey, “High-cell-density batch fermentation of Rhodococcus opacus PD630 using a high glucose concentration for triacylglycerol production,” Journal of Biotechnology, vol. 147, pp. 212–218, 2010, doi: 10.1016/j.jbiotec.2010.04.003.

E. Bonilla-Pastor, “Diseño de un sistema de producción modular en una mediana empresa de confecciones,” Universidad de Lima, vol. 0, no. 025, p. 11, 2007, doi: 10.26439/ing.ind2007.n025.607.

F. K. Pil and S. K. Cohen, “Modularity: Implications for imitation, innovation, and sustained advantage,” Academy of Management Review, vol. 31, no. 4, pp. 995–1011, 2006, doi: 10.5465/AMR.2006.22528166.

Australian Stainless Steel Development Association (ASSDA), “316: The First Step Up,” 2020. https://www.assda.asn.au/technical-info/grade-selection/316-the-first-step-up (accessed Mar. 30, 2020).

A. van Heiningen, D. Krothapalli, J. Genco, and A. Justason, “A chemical reactor analysis of industrial oxygen delignification,” Pulp and Paper Canada, vol. 104, no. 12, pp. 96–101, 2003.

G. D. Najafpour, “Bioreactor Design,” in Biochemical Engineering and Biotechnology, Elsevier, 2007, pp. 142–169.

L. J. Shah, “Heat transfer correlations for vertical mantle heat exchangers,” Solar Energy, vol. 69, no. SUPPLEMENT, pp. 157–171, Jul. 2001, doi: 10.1016/S0038-092X(01)00039-1.

K. Thoring and R. M. Müller, “Understanding Design Thinking: A Process Model Based On Method Engineering,” 2011. Accessed: Nov. 09, 2020. [Online]. Available: https://www.designsociety.org/publication/30932/Understanding+Design+Thinking%3A+A+Process+Model+based+on+Method+Engineering.

K. Hirose and N. Mishima, “Eco-efficiency evaluation of modular design smartphones,” in Procedia CIRP, Jan. 2019, vol. 84, pp. 1054–1058, doi: 10.1016/j.procir.2019.04.189.

H. A. Ruíz-Leza, R. M. Rodríguez-Jasso, R. Rodríguez-Herrera, J. C. Contreras-Esquivel, and C. N. Aguilar, “Diseño de biorreactores para fermentación en medio sólido,” Revista Mexicana de Ingeniería Química, vol. 6, pp. 33–40, 2007, [Online]. Available: https://www.redalyc.org/articulo.oa?id=62060105.

C. C. Shih, Y. Y. Su, L. C. Chen, C. M. Shih, and S. J. Lin, “Degradation of 316L stainless steel sternal wire by steam sterilization,” Acta Biomaterialia, vol. 6, no. 6, pp. 2322–2328, Jun. 2010, doi: 10.1016/j.actbio.2009.12.026.

HomeCare, “Hoja de seguridad del producto Swipe Swipol,” 2017. https://www.jomsmx.com.mx/index.php/insumos/sanitizantes/product/download/file_id-1515 (accessed Nov. 10, 2020).

P. Espinoza and B. Danilo, “Elaboración de un plan maestro de desinfección para la empresa de deshidratados Criswils,” Quito: UCE, 2019.

C. T. Obe1, S. E. Oti2, C. U. Eya3, D. B. N. Nnadi, and O. E. Nnad, “A LOW-COST PRINTED CIRCUIT BOARD DESIGN TECHNIQUE AND PROCESSES USING FERRIC CHLORIDE SOLUTION | Nigerian Journal of Technology,” 2020, Accessed: Nov. 12, 2020. [Online]. Available: http://nijotech.com/index.php/nijotech/article/view/2467.