Producción de proteínas recombinantes a partir de animales transgénicos: Sistemas y aplicaciones

Contenido principal del artículo

María Fernanda Alvarado-Madrigal
Tannia Chavarría-Quirós
Brayan Leiva-Montero
Juan José Mora-Román


El uso de animales transgénicos para la producción de proteínas recombinantes con fines terapéuticos ha sido una alternativa utilizada para la producción de medicamentos. La habilidad de realizar complejas modificaciones post traduccionales de una manera eficiente es una ventaja que este tipo de tecnología posee sobre el uso de otros organismos transgénicos. Por esta razón, a lo largo de los años se han desarrollado diferentes animales transgénicos (rumiantes, conejos, cerdos, aves e insectos) y se han estudiado distintos sistemas (leche, huevo, sangre, orina y fluido seminal) para la obtención de proteínas recombinantes. Cada animal y cada sistema cuenta con ventajas y desventajas, las cuales deben ser consideradas antes de comenzar el proceso productivo de la proteína de interés. Medicamentos como el ATryn®, el Ruconest® y el Kanuma® ya han sido aprobados por la FDA para la administración en humanos. El futuro de este tipo de preparados debe ser tomado en consideración, pues existen varias proteínas terapéuticas que se hallan en fase de investigación o a la espera de ser aprobadas y comercializadas.

Detalles del artículo

Cómo citar
Alvarado-Madrigal, M. F., Chavarría-Quirós, T., Leiva-Montero, B., & Mora-Román, J. J. (2019). Producción de proteínas recombinantes a partir de animales transgénicos: Sistemas y aplicaciones. Revista Tecnología En Marcha, 32(4), Pág. 133–144.
Artículo científico


[1] H. Almeida, M. H. Amaral, and P. Lobão, “Drugs obtained by biotechnology processing,” Brazilian Journal of Pharmaceutical Sciences, 47(2), 199-207, 2011.
[2] K. Buchholz and J. Collins, “The roots—a short history of industrial microbiology and biotechnology,” Applied Microbiology and Biotechnology, 97(9), 3747-3762, 2013.
[3] C. Schmidt, “Belated approval of first recombinant protein from animal,” Nature Biotechnology, 24(8), 877, 2006.
[4] R. Evens and K. Kaitin, “The evolution of biotecnology and its impact on health care,” Health Affairs, 34(2), 210-219, 2015.
[5] N. K. Ganguly, S. Croft, L. Singh, S. Sinha, and T. Balganesh, “Biomedicine and Biotechnology: Public Health Impact,” BioMed Research International, 2014, 1-2, 2014.
[6] M. V. Shepelev, S. V. Kalinichenko, A. V. Deykin, and I. V. Korobko, “Production of Recombinant Proteins in the Milk of Transgenic Animals: Current State and Prospects,” Acta Naturae, 10(3), 40-47, 2018.
[7] Y. H. P. Zhang, J. Sun, and Y. Ma, “Biomanufacturing: history and perspective,” Journal of Industrial Microbiology & Biotechnology, 44(4-5), 773-784, 2017.
[8] P. Berg and J. E. Mertz, “Personal Reflections on the Origins and Emergence of Recombinant DNA Technology,” Genetics, 184(1), 9-17, 2010.
[9] J. Sandow, W. Landgraf, R. Becker, and G. Seipke, “Equivalent Recombinant Human Insulin Preparations and their Place in Therapy,” European Endrocrinology, 11(1): 10-16, 2015.
[10] S. E. Wirt and M. H. Porteus, “Development of nuclease-mediated site-specific genome modification,” Current Opinion in Immunology, 24(5), 609-616, 2012.
[11] P. F. R. Little and S. H. Cross, “A cosmid vector that facilitates restriction enzyme mapping,” Proceedings of the National Academy of Sciences of the United States of America, 82(10), 3159-3163, 1985.
[12] P. Jajesniak and T. S. Wong, “QuickStep-Cloning: a sequence-independent ligation-free method for rapid construction of recombinant plasmids,” Journal of Biological Engineering, 9(15), 2015.
[13] J. Mairhofer, M. Cserjan-Puschmann, G. Striedner, K. Nöbauer, E. Razzazi-Fazeli, and R. Grabherr, “Marker-free plasmids for gene therapeutic applications–Lack of antibiotic resistance gene substantially improves the manufacturing process,” Journal of Biotechnology, 146(3), 130-137, 2010.
[14] J. A. Gossen, A. C. Molijn, G. R. Douglas, and J. Vijg, “Application of galactose-sensitive E. coli strains as selective hosts for LacZ- plasmids,” Nucleic Acids Research, 20(12), 3254, 1992.
[15] J. Skóra, P. Barć, T. Dawiskiba, D. Baczyńska, and A. Mastalerz-Migas, “Angiogenesis after plasmid VEGF165 gene transfer in an animal model,” Central European Journal of Immunology, 38(3), 305-309, 2013.
[16] F. Wegman, R. E. Geuze, Y. J. van der Helm, F. Cumhur Öner, W. J. A. Dhert, and J. Alblas, “Gene delivery of bone morphogenetic protein-2 plasmid DNA promotes bone formation in a large animal model, Journal of Tissue Engineering and Regenerative Medicine, 8(1), 763-770, 2014.
[17] C. E. Catalano, “Bacteriophage lambda: The path from biology to theranostic agent,” Wiley Interdisciplinary Reviews Nanomedicine and Nabiotechnology, 10(5), e1517, 2018.
[18] E. M. Ryan, S. P. Gorman, R. F. Donnelly, and B. F. Gilmore, “Recent advances in bacteriophage therapy: how delivery routes, formulation, concentration and timing influence the success of phage therapy,” Journal of Pharmacy and Pharmacology, 63(10), 1253-1264, 2011.
[19] J. Fan, Z. Zeng, K. Mai, Y. Yang, J. Feng, Y. Bai et al, “Preliminary treatment of bovine mastitis caused by Staphylococcus aureus, with trx-SA1, recombinant endolysin of S. aureus bacteriophage IME-SA1,” Veterinary Microbiology, 191, 65-71, 2016.
[20] C. Kishor, R. R. Mishra, S. K. Saraf, M. Kumar, A. K. Srivastav, and G. Nath, “Phage therapy of staphylococcal chronic osteomyelitis in experimental animal model,” Indian Journal of Medical Research, 143(1), 87-94, 2016.
[21] D. G. Knorre, N. V. Kudryashova, and T. S. Godovikova, “Chemical and Functional Aspects of Posttranslational Modification of Proteins,” Acta Naturae, 1(3), 29-51, 2009.
[22] O. G. Maksimenko, A. V. Deykin, Y. M. Khodarovich, and P. G. Georgiev, “Use of Transgenic Animals in Biotechnology: Prospects and Problems,” Acta Naturae, 5(1), 33-46, 2013.
[23] Y. Durocher and Butler M, “Expression systems for therapeutic glycoprotein production,” Current Opinion in Biotechnology, 20(6), 700-707, 2009.
[24] A. L. Demain and P. Vaishnav, “Production of recombinant proteins by microbes and higher organisms,” Biotechnology Advances, 27(3), 297-306, 2009.
[25] A. Dove, “Uncorking the biomanufacturing bottleneck,” Nature Biotechnology, 20(8), 777-779, 2002.
[26] L. M. Houdebine, “Production of pharmaceutical proteins by transgenic animals,” Comparative Immunology, Microbiology & Infectious Diseases, 32(2), 107-121, 2009.
[27] M. K Dyck, D. Lacroix, F. Pothier, and M. -A. Sirard, “Making recombinant proteins in animals – different systems, different applications,” Trends in Biotechnology, 21(9), 394-399, 2003.
[28] Organización de las Naciones Unidas para la Alimentación y la Agricultura, “Producción y productos: Animales lecheros, 2018. Disponible en: (Accesado: 9-dic-2018)
[29] Y. Echelard, C. A. Ziomek, and H. M. Meade, “Production of recombinant therapeutic proteins in the milk of transgenic animals,” Biopharm International, 19(8), 36-46, 2006.
[30] W. H. Eyestone, “Production and breeding of transgenic cattle using in vitro embryo production technology,” Theriogenology, 51(2), 509-517, 1999.
[31] M. Massoud, J. Attal, D. Thépot, H. Pointu, M. G. Stinnakre, M. C. Théron et al, “The deleterious effects of human erythropoietin gene driven by the rabbit when acidic protein gene promoter in transgenic rabbits”, Reproduction Nutrition Development, 36(5), 555-563, 1996.
[32] L. M. Houdebine, “The production of pharmaceutical proteins from the milk of transgenic animals,” Reproduction Nutrition Development, 35(6), 609-617, 1995.
[33] K. Potočnik, V. Gantner, K. Kuterovac, and A. Cividini, “Mare´s milk: composition and protein fraction in comparison with different milk species,” Mljekarstvo, 61(2), 107-113, 2011.
[34] R. J. Wall, D. E. Kerr, and K. R. Bondioli, “Transgenic Dairy Cattle: Genetic Engineering on a Large Scale,” Journal of Dairy Science, 80(9), 2213-2224, 1997.
[35] T. D. Wilkins and W. Velander, “Isolation of recombinant proteins from milk,” Journal of Cellular Biochemistry, 49(4), 333-338, 1992.
[36] Z. L. Nikolov and S. L. Woodward, “Downstream processing of recombinant proteins from transgenic feedstock,” Current Opinion in Biotechnology, 15(5), 479-486, 2004.
[37] T. Morçöl, Q. He, and S. J. D. Bell, “Model Process for Removal of Caseins from Milk of Transgenic Animals,” Biotechnology Progress, 17(3), 577-582, 2001.
[38] A. J. Harvey, G. Speksnijder, L. R. Baugh, J. A. Morris, and R. Ivarie, “Expression of exogenous protein in the egg white of transgenic chickens,” Nature Biotechnology, 20(4), 396-399, 2002.
[39] T. S. Park, H. G. Lee, J. K. Moon, H. J. Lee, J. W. Yoon, B. N. Yun et al, “Deposition of bioactive human epidermal growth factor in the egg white of transgenic hens using an oviduct-specific minisynthetic promoter,” The FASEB Journal, 29(6), 2386-2396, 2015.
[40] Y. Wang, S. Zhao, L. Bai, J. Fan, and E. Liu, “Expression Systems and Species Used for Transgenic Animal Bioreactors,” BioMed Research International, 2013, 2013.
[41] E. Rehbinder, M. Engelhard, K. Hagen, and R. B. Jørgensen, R. Pardo-Avellaneda, A. Schnieke et al, “Promises and risks of biopharmaceuticals derived from genetically modified plants and animals,” Berlin: Springer-Verlag Berlin Heidelberg, 2009, p. 26.
[42] M. E. Swanson, M. J. Martin, J. K. O´Donnell, K. Hoover, W. Lago, V. Huntress et al, “Production of functional human hemoglobin in transgenic swine,” Biotechnology (N Y), 10(5), 557-559, 1992.
[43] V. G. Pursel, D. J. Bolt, K. F. Miller, C. A. Pinkert, R. E. Hammer, R. D. Palmiter et al, “Expression and performance in transgenic pigs,” Journal of Reproduction and Fertility. Supplement, 40, 235-245, 1990.
[44] D. E. Kerr, F. Liang, K. R. Bondioli, H. Zhao, G. Kreibich, R. J. Wall et al, “The bladder as a biorreactor: Urothelium production and secretion of growth hormone into urine,” Nature Biotechnology, 16 (1), 75-79, 1998.
[45] H. M. Zbikowska, N. Soukhareva, R. Behnam, R. Chang, R. Drews, H. Lubon et al, “The use of the uromodulin promoter to target production of recombinant proteins into urine of transgenic animals,” Transgenic Research, 11(4), 425-435, 2002.
[46] H. M. Zbikowska, N. Soukhareva, R. Behnam, H. Lubon, D. Hammond, and S. Soukharev, “Uromodulin promoter directs high-level expression of biologically active human α1-antitrypsin into mouse urine,” Biochemical Journal, 365 (Pt 1), 7-11, 2002.
[47] Z. Y. Ryoo, M. O. Kim, K. E. Kim, Y. Y. Bahk, J. W. Lee, S. H. Park et al, “Expression of recombinant human granulocyte macrophage-colony stimulating factor (hGM-CSF) in mouse urine,” Transgenic Research, 10(3), 193-200, 2001.
[48] P. Chrenek, A. V. Makarevich, J. Pivko, and J. Bulla, “Transgenic Farm Animal Production and Application,” Slovak Journal of Animal Science, 43(2): 45-49, 2010.
[49] L. R. Bertolini, H. Meade, C. R. Lazzarotto, L. T. Martins, K. C. Tavares, M. Bertolini et al, “The transgenic animal platform for biopharmaceutical production,” Transgenic Research, 25(3), 329-343, 2016.
[50] G. Wright, A. Carver, D. Cottom, D. Reeves, A. Scott, P. Simons et al, “High Level Expression of Active Human Alpha-1-Antitrypsin in the Milk of Transgenic Sheep,” Biotechnology (N Y), 9(9), 830-834, 1991.
[51] N. Rudolph, “Technologies and economics for protein production in transgenic animal milk”, Genetic Engineering News, 17(16), 36-37, 1997.
[52] H. Luboń and R. K. Paleyanda, “Vitamin K-dependent protein production in transgenic animals,” Thrombosis and Haemostasis, 78(1), 532-536.
[53] M. Tomita, H. Munetsuna, T. Sato, T. Adachi, R. Hino, M. Hayashi et al, “Transgenic silkworms produce recombinant human type III procollagen in cocoons,” Nature Biotechnology, 21(1), 52-56, 2003.
[54] S. Maeda, T. Kawai, M. Obinata, H. Fujiwara, T. Horuchi, Y. Saeki et al, “Production of human alpha-interferon in silkworm using a baculovirus vector,” Nature, 315 (6020), 592-594.
[55] M. Markaki, D. Drabek, I. Livadaras, R. K. Craig, F. Grosveld, and C. Savakis, “Stable expression of human growth hormone over 50 generations in transgenic insect larvae,” Transgenic Research, 16(1): 99-107, 2007.
[56] W. Gavin, “ATryn®: 1st GE (genetically engineered) animal success story for production of a human recombinant pharmaceutical,” BMC Proceedings, 8(Suppl 4), 2014.
[57] A. Sánchez y J. Gadea, “Animales transgénicos para la producción de proteínas humanas,” Anales de Veterinaria de Murcia, 30, 7-18, 2014.
[58] M. P. Cruz, “Conestat Alfa (Ruconest): First Recombinant C1 Esterase Inhibitor for the Treatment of Acute Attacks in Patients With Hereditary Angioedema,” Pharmacy and Therapeutics, 40(2), 109-114, 2015.
[59] J. Lipozenčić and R. Wolf, “Life-threatening severe allergic reactions: urticaria, angioedema, and anaphylaxis,” Clinics in Dermatology, 23(2), 193-205, 2005.
[60] M. Shirley, “Sebelipase Alfa: First Global Approval,” Drugs, 75(16), 1935-1940, 2015.
[61] J. A. Bornhorst, F. R. O. Calderon, M. Procter, W. Tang, E. R. Ashwood, and R. Mao, “Genotypes and serum concentrations of human alpha-1-antitrypsin “P” protein variants in a clinical population, Journal of Clinical Pathology, 60(10), 1124-1128, 2007.
[62] D. S. Vinay and B. S. Kwon, “4-1BB (CD137), an inducible costimulatory receptor, as a specific target for cancer therapy,” BMB Reports, 47(3), 122-129, 2014.
[63] V. N. Pak, “The use of alpha-fetoprotein for the treatment of autoinmune diseases and cancer,” Therapeutic Delivery, 9(1), 37-46, 2018.
[64] N. Raben, P. Plotz, and B. Byrne, “Acid a-Glucosidase Deficiency (Glycogenosis Type II, Pompe Disease),” Current Molecular Medicine, 2(2), 145-166, 2002.

Artículos más leídos del mismo autor/a