Control bio-inspirado para un actuador elástico por medio del algoritmo de aprendizaje por retroalimentación del error
Contenido principal del artículo
Resumen
El presente documento abarca la mejora del esquema de control de los actuadores de rigidez variable (VSA), presentes en la articulación de la rodilla de un robot bípedo llamado Binocchio, desarrollado por el grupo de Neuro-rehabilitación del Instituto Cajal. El diseño de dicho robot se basó en varias características biológicas presentes en los seres humanos como por ejemplo la visco-elasticidad de los músculos. Para controlar estos actuadores de manera robusta y eficiente no es suficiente el uso de estrategias de control clásico basados en modelos, debido a que estos métodos no son capaces de tomar en cuenta todas las no-linealidades intrínsecas del actuador debido a su estructura mecánica y a su naturaleza elástica. Por ello se adaptó un método bio-inspirado de control conocido como Feedback Error Learning (FEL) que utiliza una red neuronal para aprender el modelo inverso sin ningún conocimiento a priori de los parámetros del actuador. Seguidamente se procedió a realizar pruebas de control para validar su implementación. Finalmente, fue posible adaptar el FEL para el control de los VSA, lo que incidió en una mejora significativa en el rendimiento de los controladores de trayectoria. Pruebas de robustez y de estabilidad permitieron validar el uso del FEL como una alternativa viable para el control de los actuadores.
Detalles del artículo
Los autores conservan los derechos de autor y ceden a la revista el derecho de la primera publicación y pueda editarlo, reproducirlo, distribuirlo, exhibirlo y comunicarlo en el país y en el extranjero mediante medios impresos y electrónicos. Asimismo, asumen el compromiso sobre cualquier litigio o reclamación relacionada con derechos de propiedad intelectual, exonerando de responsabilidad a la Editorial Tecnológica de Costa Rica. Además, se establece que los autores pueden realizar otros acuerdos contractuales independientes y adicionales para la distribución no exclusiva de la versión del artículo publicado en esta revista (p. ej., incluirlo en un repositorio institucional o publicarlo en un libro) siempre que indiquen claramente que el trabajo se publicó por primera vez en esta revista.