Design and analysis of convergence and stability of iterative methods for solving nonlinear equations Diseño y análisis de la convergencia y estabilidad de métodos iterativos para la resolución de ecuaciones no lineales

Main Article Content

Armando Gabriel Solís Zúñiga
Alicia Cordero Barbero
Juan Ramón Torregrosa Sánchez
Juan Pablo Soto Quirós

Abstract

One stream in numerical analysis is the creation of new iterative methods for the resolution of non-linear equations; optimal processes are sought in contrast with their order of convergence and the number of functional evaluations compared to usual known methods. This article shows a design of a new parametric family of iterative methods based on the Chun's family of methods which contains the particular case of the Ostrowski's scheme. Through an analysis with complex dynamic it is intended to visualize dynamic planes and parameters' planes to choose the best parameter who brings more stable behavior for the scheme under study and make it more efficient.

Article Details

How to Cite
Solís Zúñiga, A. G., Cordero Barbero, A. ., Torregrosa Sánchez, J. R., & Soto Quirós, J. P. (2021). Design and analysis of convergence and stability of iterative methods for solving nonlinear equations: Diseño y análisis de la convergencia y estabilidad de métodos iterativos para la resolución de ecuaciones no lineales. Revista Digital: Matemática, Educación E Internet, 21(2). https://doi.org/10.18845/rdmei.v21i2.5602
Section
Articles