Modelo de clasificación en diferentes estratos forestales en un entorno de llanura aluvial utilizando redes neuronales artificiales
Contenido principal del artículo
Resumen
La selva amazónica presenta diferentes estratos forestales, debido a su estructura heterogénea. En el que estos estratos pueden variar en altos, medios y bajos. El conocimiento de los diferentes patrones de estructuras verticales que se encuentran en el bosque es extremadamente importante para comprender la dinámica de la vegetación, lo que influye en las estrategias de conservación del bosque. Con el fin de optimizar el proceso de clasificación de los diferentes tipos de estratos, el objetivo del presente trabajo fue utilizar redes neuronales artificiales (RNA) para clasificar estos estratos. Se utilizaron dos algoritmos de resilient propagation (Rprop+ y Rprop-), en cuatro configuraciones diferentes de variables de entrada. El entrenamiento y la prueba de los ocho modelos de RNAs se realizaron utilizando el software R. Los modelos se evaluaron mediante una matriz de confusión. En qué modelos con entradas: HT, DAP y QF; HT, DAP y solo HT del algoritmo Rprop + obtuvieron 100% de aciertos en la clasificación de estrato, presentando una alta tasa de aprendizaje, confiabilidad y generalización de datos.
Detalles del artículo
Esta obra está bajo una licencia internacional Creative Commons Atribución-NoComercial-SinDerivadas 4.0.
Al enviar un artículo a la Revista Forestal Mesoamericana kurú (RFMK), los autores ceden los derechos patrimoniales a la editorial de la RFMK una vez su manuscrito haya sido aprobado para publicación, autorizando a la RFMK a editarlo, reproducirlo, distribuirlo, y publicarlo en formato físico y/o electrónico, incluido Internet. La titularidad de los derechos morales sobre los trabajos objeto de esta cesión seguirá perteneciendo a los autores.
Este obra está bajo una Licencia Creative Commons Atribución-NoComercial-SinDerivadas 4.0 Unported.