
Tecnología en Marcha
Vol. 39, No 1. Enero-Marzo, 2026 91

Uso de estadísticos T2 de Hotelling 
para detectar problemas de 

densidad en una espuma metálica
Use of Hotelling’s T² Statistics to Detect 

Density Issues in a Metal Foam
Paula Solano-Leandro1, Valeria Mayorga-Cervantes2, 

Marcela Meneses-Guzmán3, Bruno Chiné-Polito4

Fecha de recepción: 31 de mayo, 2025 
Fecha de aprobación: 22 de septiembre, 2025

Solano-Leandro, P; Mayorga-Cervantes, V; Meneses-Guz-
mán, M; Chiné-Polito, B. Uso de estadísticos T2 de Hotelling 

para detectar problemas de densidad en una espuma metáli-
ca. Tecnología en Marcha. Vol. 39  No 1. Enero-Marzo, 2026. 

Pág. 91-103. 
 

 https://doi.org/10.18845/tm.v39i1.8018

1	 Escuela de Ingeniería en Producción Industrial, Instituto Tecnológico de Costa 
Rica. Costa Rica.  

 pasolano@itcr.ac.cr  
 https://orcid.org/0009-0001-9178-196X

2	 Ingeniera en Producción Industrial. Trabajadora independiente. Costa Rica. 
 valemayorgac@gmail.com  
 https://orcid.org/0009-0000-6337-3670

3	 Escuela de Ingeniería en Producción Industrial, Instituto Tecnológico de Costa 
Rica. Costa Rica. 

 mameneses@tec.ac.cr 
 https://orcid.org/0000-0001-5922-0145

4	 Escuela de Ciencia e Ingeniería de los Materiales, Instituto Tecnológico de 
Costa Rica. Costa Rica. 

 bchine@tec.ac.cr 
 https://orcid.org/0000-0001-6966-5973

https://doi.org/10.18845/tm.v39i1.8018 
mailto:pasolano@itcr.ac.cr
https://orcid.org/0009-0001-9178-196X
mailto:valemayorgac@gmail.com
https://orcid.org/0009-0000-6337-3670
mailto:mameneses@tec.ac.cr
https://orcid.org/0000-0001-5922-0145
mailto:bchine@tec.ac.cr
https://orcid.org/0000-0001-6966-5973


Tecnología en Marcha
Vol. 39, No 1. Enero-Marzo, 202692

Palabras clave
Espuma metálica; perfiles de densidad; estadístico  de Hotelling; detección de defectos.

Resumen
La estructura interna de una espuma metálica se puede investigar mediante la medición de 
perfiles de densidad, por ejemplo, usando técnicas de medición no-destructivas, escaneando 
el material a lo largo de su espesor o a través de alguna dirección representativa. En este 
estudio se analizan los perfiles de intensidad de la radiación gamma absorbida por una espuma 
fabricada con una aleación AlSi10. Si los perfiles se caracterizan mediante indicadores de forma 
del perfil, que reflejan el estado de control de la densidad del material, es posible diseñar un 
gráfico T² de Hotelling para Fase I, identificando cambios en la media de dichos indicadores 
a lo largo del espacio. La propuesta se basa en observar varios valores del estadístico  por 
arriba del límite establecido y en forma consecutiva, porque estos pueden detectar variaciones 
de densidad en una zona específica del material. Se ha comprobado que la tasa de falsas 
alarmas de esta propuesta es muy baja, por lo que se permite planificar su implementación 
para monitorear posibles defectos internos. Además, proporciona un método para evaluar la 
uniformidad de la densidad, sin necesidad de recurrir a métodos de control destructivos.

Keywords
Metal foam; density profiles; Hotelling’s statistics; defects detection.

Abstract
The internal structure of a metal foam can be investigated by measuring density profiles, using 
no destructive testing which scans the material across its thickness or along some representative 
direction. In this study we analyse the profiles of gamma radiation intensity, absorbed by a metal 
foam manufactured with a AlSi10 alloy. If these profiles are characterized using shape indicators 
reflecting the state of density control of the material, it is possible to design a Phase I Hotelling’s  
chart to identify changes in the mean of these indicators across the space. The approach is 
based on observing several  statistic values consecutively exceeding the established limit, as 
these may detect density changes within a specific area of the material. It has been verified that 
the false alarm rate of this approach is very low, which enables the planning of its implementation 
for monitoring potential internal defects. Furthermore, it provides a method for assessing density 
uniformity without the need for destructive testing methods.

Introducción
El Control Estadístico de Procesos (SPC, por su sigla en inglés) proporciona un conjunto de 
métodos y herramientas accesibles que permiten mejorar el desempeño de un determinado 
proceso, reduciendo la variabilidad y evaluando su capacidad para cumplir con las 
especificaciones de un producto. Entre las herramientas más relevantes del SPC se encuentran 
los gráficos de control estadístico, tanto univariados como multivariados, cuyo propósito es 
monitorear el proceso y detectar desviaciones [1]. Un gráfico de control se construye a partir de 
información obtenida de una muestra recolectada mientras el proceso opera bajo condiciones 
de control estadístico. Al estar diseñado con la variabilidad natural del proceso, cualquier 
cambio estadísticamente significativo se manifestará como una alteración en los parámetros 
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representados en el gráfico. Esta etapa de diseño de gráficos de control se denomina Fase I. 
Posteriormente, la Fase II, de monitoreo u operativa, utiliza los límites de control establecidos 
durante la Fase I para detectar y actuar sobre causas especiales de variación [1].
Cuando se abordan problemas caracterizados por múltiples parámetros, es recomendable 
emplear gráficos de control multivariados, pues los gráficos univariados —que consideran una 
sola variable a la vez— tienden a incrementar la probabilidad de generar falsas alarmas debido 
a causas especiales de variación [2,3]. Entre los gráficos multivariados más utilizados en la 
literatura se encuentra el gráfico de Hotelling, diseñado para detectar cambios en la media de 
variables interrelacionadas. Este gráfico representa una extensión multivariada del gráfico de 
control de Shewhart y permite la supervisión simultánea de múltiples variables que describen 
un proceso o la calidad de un producto [3].
Las espumas metálicas son materiales celulares de celdas cerradas, constituidas por una red 
de espacios vacíos (poros grandes) delimitados mediante paredes solidas interconectadas y 
caracterizadas por bajos valores de densidad [4,5]. Lo anterior, combinado con las propiedades 
mecánicas, térmicas, etc. del metal base [6,7], permite su aplicación funcional en absorción de 
energía, aislamiento térmico y acústico, amortiguamiento de vibraciones, así como para usos 
estructurales en sectores como el automotriz, naval y biomédico [8]. No obstante, su adopción 
comercial ha sido limitada debido a factores relacionados con variaciones en su estructura, 
métodos de fabricación y costos de producción [9,10].
La manufactura de una espuma debe asegurar que el material mantenga una porosidad 
controlada en cantidad, tamaño y distribución, garantizando una estructura homogénea de la 
matriz del material [7,9]. Estos objetivos son difíciles de alcanzar, especialmente en el caso de 
una espuma de aluminio cuando su producción es por vía metalúrgica en moldes y usando 
agentes espumantes. La coexistencia de fases metálicas sólida, líquida y de burbujas gaseosas 
genera fenómenos complejos que dificultan el control del proceso [8,11]. Como resultado, se 
obtienen materiales no homogéneos, con gradientes de densidad, variaciones en el tamaño de 
celdas y presencia de defectos [11,12]. Estos factores, en conjunto con el desarrollo constante 
de nuevos materiales, hace que este campo sea relevante y desafiante [11, 13]. En particular, 
la densidad se relaciona con las propiedades mecánicas del material, como son la resistencia a 
tracción, compresión o torsión [10, 14–16]. En efecto el perfil de densidad, medido a lo largo un 
espesor o de una longitud de una muestra de material celular, puede proporcionar información 
sobre su uniformidad estructural [17-19]. También en el caso de materiales compuestos, como 
los paneles de viruta de madera, los parámetros de proceso afectan significativamente la forma 
del perfil de densidad [20,21,22]. En [23] se ha estudiado la relación entre el perfil de densidad 
vertical en tableros de viruta de madera y su desempeño funcional, demostrando que la forma 
del perfil influye directamente en el rendimiento del producto final. 
El objetivo de este trabajo es proponer un procedimiento de monitoreo estadístico en la Fase I 
para el control de una espuma de aluminio. La propuesta contempla la utilización de técnicas 
de medición no destructivas (NDT, por su sigla en inglés), para analizar la densidad de la 
espuma mediante perfiles experimentales de esta magnitud a lo largo del material. A partir de 
los perfiles se calculan los indicadores de la forma del perfil y posteriormente se determinan los 
estadísticos. Debido a la naturaleza de las espumas metálicas producidas por vía metalúrgica, 
es común observar heterogeneidad en su densidad, ocasionando que algunos valores del 
estadístico  excedan los límites de control del gráfico de manera aislada. Si embargo, la 
presencia de estos valores aislados no implica necesariamente que el proceso esté fuera 
de control. Por lo tanto, se propone una interpretación de los valores consecutivos de los 
estadísticos que exceden los límites de control, para evaluar la uniformidad de la densidad de 
las espumas, en la zona involucrada.
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La metodología empleada en este trabajo se describe en las secciones siguientes. Se brinda 
el método de medición y la estrategia para obtener los conjuntos de perfiles de densidad, así 
como el modo para determinar los indicadores del perfil. Sucesivamente, se introduce la técnica 
para la reducción de indicadores, para cada conjunto de perfiles, seleccionando aquellos que 
serán empleados en el diseño del gráfico de control. Posteriormente, se presenta el enfoque 
para evaluar el desempeño del gráfico, así como una propuesta de interpretación de los valores 
estadísticos consecutivos que exceden el límite superior de control. Finalmente, se presentan 
las conclusiones y las recomendaciones finales.

Metodología
Los perfiles de densidad se obtuvieron a partir de mediciones de la intensidad de radiación 
absorbida por el material, utilizando un sistema de escaneo por rayos gamma [24]. Las 
mediciones se desarrollaron en una muestra de espuma de aluminio con dimensiones de 
16.5 × 16.5 × 4.0 cm3, fabricada mediante el proceso de espumado a partir de precursores 
comerciales Alulight® GmbH. Los precursores consistían en una aleación AlSi10 mezclada con 
hidruro de titanio (TiH₂), al 0.80 % en peso, como agente espumante. Durante la fabricación, 
las varillas precursoras se colocaron sobre el plano X–Y perpendicular a la dirección de la 
gravedad, como en Figura 1. En la misma figura se brindan los ejes de referencia X, Y, Z, la 
muestra de la espuma y las siguientes  configuraciones para la medición  de la densidad: 
Canto X, rayos paralelos al eje Y, donde, para una determinada coordenada X, las mediciones 
son en correspondencia de distintos valores Z; Canto Y, rayos paralelos al eje X, donde, para 
una determinada coordenada Y, las mediciones son en correspondencia de distintos valores Z; 
Frente X, rayos paralelos al eje Z donde, para una determinada coordenada X, las mediciones 
son en correspondencia de distintos valores Y; Frente Y, rayos paralelos al eje Z donde, para 
una determinada coordenada Y, las mediciones son en correspondencia de distintos valores 
X. Para cada posición del escaneo, se registraron tres mediciones con un tiempo de muestreo 
de 30 segundos por medición. Cada perfil de Canto se formó a partir de 18 mediciones, 
espaciadas cada 2 mm entre 0 mm y 34 mm y cada perfil de Frente se construyó con 82 
mediciones, separadas cada 2 mm, desde 0 mm hasta 162 mm. En total, se registraron 39 
perfiles para cada uno de los Cantos y de los Frentes. 

Figura 1. Sistema de referencia y posicionamiento de los precursores en la muestra de la espuma metálica.

Sucesivamente se implementó el método para caracterizar la densidad de la espuma, 
procesando directamente los valores medidos, pues la intensidad de radiación gamma 
absorbida es proporcional a esta propiedad. En el trabajo se usó el método de Wong et al. 
[20], desarrollado para evaluar la calidad de tableros de partículas de madera. Los autores 
asumieron como variable de respuesta el perfil de densidad a lo largo del espesor del tablero, 
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caracterizando su forma mediante varios parámetros. El mismo método se implementó para la 
densidad de la espuma metálica, usando los 14 indicadores señalados en la Figura 2. En la 
figura, la densidad máxima (PD) se definió como el promedio entre la densidad máxima medida 
en la mitad izquierda del perfil, correspondiente a la base (PDb), y la densidad máxima en la 
mitad derecha, correspondiente a la superficie (PDs).  La posición central del perfil, próxima a X 
= 80 mm, dividió el intervalo de medición en dos mitades. Por su parte, la densidad del núcleo 
(CD) se calculó como la media de la densidad en la sección central que abarca el 20 % de 
las posiciones alrededor del punto medio del perfil. La densidad media (MD) correspondió al 
promedio de todas las mediciones de densidad a lo largo del perfil. El factor de gradiente (GF) 
se definió como la distancia horizontal entre la línea central (CL) y el contorno del perfil, medida 
a una altura equivalente a la mitad de la diferencia entre la densidad máxima (PD) y la densidad 
del núcleo (CD). Este factor se calculó para ambos lados del perfil: hacia la base (GFb) y 
hacia la superficie (GFs). El área de pico (PA) correspondió al área bajo la curva del perfil 
que superaba la línea de la densidad media (MD), calculada también de forma separada para 
la base (PAb) y la superficie (PAs). Las distancias de pico (Pbb y Pbs) indicaron la distancia 
desde los extremos del perfil (base o superficie) hasta el punto donde el perfil intersecaba la 
línea de MD. Finalmente, se propuso el rango (R) como un indicador adicional, definido como 
la diferencia entre los valores máximo y mínimo de densidad en todo el perfil. 

Figura 2. Indicadores que caracterizan a un perfil de densidad de espuma metálica.

Para desarrollar el método, se programó una rutina en lenguaje R para extraer los 14 
indicadores, a partir de cada perfil de densidad. Esto generó un conjunto de 14 variables para 
cada uno de los 39 perfiles, tanto de Frentes como de Cantos.  Se aplicó la técnica de Análisis 
Factorial a cada conjunto de datos, con el objetivo de reducir la dimensionalidad e identificar 
un subconjunto de indicadores que explicara la mayor parte de la varianza total. Con los 
indicadores seleccionados, se diseñó un gráfico de control multivariado utilizando el estadístico 
T2 de Hotelling [3], el cual se calculó mediante la ecuación (1).

𝑇𝑇! = (	𝒙𝒙 − 𝒙𝒙'	)´	𝑺𝑺#$(𝒙𝒙 − 𝒙𝒙')			 	 (1)

donde 𝒙𝒙" = $𝑥𝑥!̅, 𝑥̅𝑥", 𝑥𝑥#̅, … , 𝑥̅𝑥$)
%
  representa el vector de medias muestrales de los indicadores 

que caracterizan los perfiles, 𝑇𝑇! = (	𝒙𝒙 − 𝒙𝒙'	)´	𝑺𝑺#$(𝒙𝒙 − 𝒙𝒙')			  es el vector de variables que caracterizan a cada perfil y 𝑇𝑇! = (	𝒙𝒙 − 𝒙𝒙'	)´	𝑺𝑺#$(𝒙𝒙 − 𝒙𝒙')			  la 
matriz de varianza-covarianza muestral de las 𝑝x𝑝 variables. Así, el valor de un estadístico T2 
de Hotelling cuantifica la distancia multivariada entre un vector de observaciones y la media 
multivariada del proceso, ponderada por la variabilidad y correlación entre variables.  Cuanto 
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mayor es su valor, mayor es la discrepancia con respecto al comportamiento esperado, 
mientras que valores pequeños indican similitud con los valores de referencia.  Los límites de 
control superior (UCL) e inferior (LSC) para controlar los estadísticos, para Fase I, son:

𝑈𝑈𝑈𝑈𝑈𝑈 = 	
(𝑚𝑚 − 1)!

𝑚𝑚 𝛽𝛽",$/!,('($())/!	 	 (2)

LSC = 0	

donde 𝑈𝑈𝑈𝑈𝑈𝑈 = 	
(𝑚𝑚 − 1)!

𝑚𝑚 𝛽𝛽",$/!,('($())/!	 es la cola superior de la distribución beta con parámetros 𝑈𝑈𝑈𝑈𝑈𝑈 = 	
(𝑚𝑚 − 1)!

𝑚𝑚 𝛽𝛽",$/!,('($())/!	 . 
Se utilizó la función mqcc de R, para determinar los límites de control a partir de los perfiles 
originales, estableciendo un error tipo I, a, como valor individual. Dado que se realizaron 
pruebas simultáneas, para la interpretación se debió tomar en cuenta el error de la familia, 
calculado como: 𝛼𝛼!"#$%$" =(1 − 𝛼𝛼)&  donde 𝑝 es el número de variables. Con el fin de evaluar 
el desempeño del gráfico de control en términos del ARL0 de diseño correspondiente a                   
1/ a, se implementó una función “boostrapping” para generar nuevos perfiles a partir de los 
originales. En este caso se tomaron 2 perfiles al azar y se promediaron sus valores para cada 
posición, generando así N nuevos perfiles en cada iteración. El procedimiento se aplicó por 
separado a los conjuntos de perfiles correspondientes a Canto X, Canto Y, Frente X y Frente 
Y. Para cada nuevo perfil, se calcularon los indicadores seleccionados y su correspondiente 
estadístico T2 mediante la Ecuación 1. Se identificó si dicho estadístico superaba el límite 
superior de control y se registró el “run length” o número de muestras necesarias para que 
el gráfico detecte un fuera de control. Este se promedió para determinar el ARL de las 1000 
iteraciones ejecutadas. Sucesivamente, se realizaron corridas para diferentes valores de a, así 
comparando el desempeño del gráfico. Cualquier cambio en el proceso —reflejado en la media 
o la correlación entre indicadores— se manifestaría como un cambio en el valor del estadístico 
T2, permitiendo su detección cuando se compare con el límite previamente establecido. Como la 
estructura interna de las espumas no es homogénea, es esperable que mediante el estadístico   
T2 se muestre saltuariamente un fuera de control, como punto aislado. En cambio, la aparición 
de varios estadísticos T2 consecutivos fuera del límite de control indicaría que los perfiles de 
una zona específica de la espuma metálica puedan evidenciar un cambio consistente en su 
forma, señalando posibles defectos internos o irregularidades en la uniformidad de la densidad 
del material.

Resultados y discusión
En la Figura 3 se brindan los perfiles experimentales de Canto X y Canto Y, observando una 
densidad mayor en las posiciones extremas respecto de las posiciones más centrales. Este 
comportamiento se relaciona con el enfriamiento y solidificación prematura de la espuma 
cercana de las paredes del molde, que provoca en esa región una expansión reducida de 
las burbujas. La Figura 4 muestra los perfiles de Frente, donde se aprecia que los de Frente 
X presentan una mayor irregularidad en las mediciones, en comparación con los de Frente Y.  
Esto podría indicar que los precursores, dispuestos perpendicularmente al eje Y, entrando en 
contacto entre sí durante la expansión, generan un patrón no homogéneo de burbujas, reflejado 
en variaciones locales de la densidad.
Para estos perfiles se evalúa la reducción de dimensionalidad mediante Análisis Factorial 
en los cuatro conjuntos (Canto X, Canto Y, Frente X y Frente Y), identificándose que el 80 % 
de la variabilidad total se explica principalmente por los 4 indicadores Rango, PD, CD y MD. 
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Utilizando la Ecuación 2 con 𝑝 = 4 indicadores, se establece el límite de control superior, cuyos 
valores son 15.19949, 13.7690546 y 11.70098 para los a alternativos de 0.0010, 0.0027 y 
0.0100, respectivamente. 
Aunque el tamaño de muestra no altera la estructura de la matriz de varianza-covarianza, 
sí influye en la estabilidad de sus estimaciones. Con pocas observaciones, la matriz puede 
ser inestable o sesgada, mientras que un mayor número de muestras permite una mejor 
aproximación a la covarianza poblacional. Por ello, se emplea N=200, una cantidad mayor de 
muestras en comparación con la cantidad original de 39 perfiles. 

 
Figura 3. Perfiles de la radiación absorbida de Canto X y Canto Y de la espuma metálica.

Figura 4. Perfiles de la radiación absorbida de Frente X y Frente Y de la espuma metálica.

En el Cuadro 1 se brinda el resultado del ARL para cada conjunto de mediciones, en 
correspondencia de tres valores de a. Para todos los casos, el ARL mayor se obtiene para 
las mediciones de Canto X, mientras el menor para el Frente Y, con valores que van desde 
120 hasta 192. Se observa que, aunque la diferencia entre los errores a sea considerable, 
los resultados de los ARL estimados no lo son, siendo respectivamente de 36, 33 y 27, para 
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el Canto X. Si se comparan estos resultados con el valor teórico del ARL, se aprecia que en 
promedio el ARL del gráfico es más bajo, pero esta diferencia se reduce considerablemente si 
se confronta con el ARL de la tasa de error de familia (FWER) de 1- (1-a)𝑝. 
El estadístico T2 de Hotelling mide la distancia multivariada entre vectores de medias de los 
indicadores de los perfiles, ponderada por la variabilidad y correlación entre variables. Por 
tanto, la presencia de varios valores T2 consecutivos fuera de control indica un cambio en la 
densidad del material en esa zona. Valores altos del estadístico reflejan una mayor diferencia 
respecto a la media esperada, mientras que valores bajos sugieren que no hay diferencias 
significativas.

Cuadro 1. Resultados del ARL para los tres valores de a individual.

a 0.00100 Mínimo y 
máximo 0.00270 Mínimo y 

máximo 0.01000 Mínimo y 
máximo

UCL 15.19949 13.7690546 11.70098

ARL Canto X 36
Min=1

Max=191
33

Min=1

Max=185
27

Min=1

Max=185

ARL Canto Y 26
Min=1

Max=182
22

Min=1

Max=185
19

Min=1

Max=153

ARL Frente X 29
Min=1

Max=175
24

Min=1

Max=192
18

Min=1

Max=120

ARL Frente Y 26
Min=1

Max=182
23

Min=1

Max=185
18

Min=1

Max=153
ARL  FWER 250 93 25

En el Cuadro 2 se aprecia que, para las mediciones del Canto X, de las 1000 iteraciones se 
encuentran 118 con secuencias de al menos dos estadísticos T2 de Hotelling consecutivos; de 
estas, 111 iteraciones tienen solo una secuencia, 6 iteraciones dos secuencias y 1 iteración 
presenta tres secuencias. La secuencia más larga encontrada contiene solo 3 valores del 
estadístico, uno más del valor establecido de 2. 
De acuerdo con los resultados de los Cuadros 2, 3 y 4, las iteraciones que encuentran una 
secuencia son más del 80%, mientras que un porcentaje menor se debe a 2 secuencias y aun 
menos a 2 secuencias.

Cuadro 2. Cantidad de secuencias formadas por dos estadísticos T2 consecutivos encontradas en cada iteración.

a= 0.001 Iteraciones con 
secuencias 

Cantidad de 
secuencias 

Cantidad de 
iteraciones

Longitud más 
larga 

Canto X 118

1 111 94%

3
2 6 5%
3 1 1%
4 0 0%

Canto Y 251

1 218 87%

3
2 28 11%
3 4 2%
4 1 0%
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a= 0.001 Iteraciones con 
secuencias 

Cantidad de 
secuencias 

Cantidad de 
iteraciones

Longitud más 
larga 

Frente X 217

1 191 88%

3
2 26 12%
3 0 0%
4 0 0%

Frente Y 234

1 207 88%

3
2 26 11%
3 1 0%
4 0 0%

Cuadro 3. Cantidad de secuencias formadas por mínimo dos estadísticos 
T2 consecutivos encontradas en cada iteración.

a=0.0027 Iteraciones con 
secuencias 

Cantidad de 
secuencias Cantidad de iteraciones Longitud más 

larga 

Canto X 130

1 121 93%

3
2 8 6%
3 1 1%
4 0 0%

Canto Y 313

1 265 85%

3
2 243 78%
3 4 1%
4 1 0%

Frente X 303

1 256 84%

3
2 46 15%
3 1 0%
4 0 0%

Frente Y 304

1 254 84%

3
2 47 15%
3 3 1%
4 0 0%
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Cuadro 4. Cantidad de secuencias formadas por mínimo dos estadísticos 
T2 consecutivos encontradas en cada iteración.

a= 0.01 Iteraciones con 
secuencias 

Cantidad de 
secuencias 

Cantidad de 
iteraciones

Longitud más 
larga 

Canto X 196
1 179 91%

32 16 8%
3 1 1%

Canto Y 379

1 302 80%

3
2 63 17%
3 13 3%
4 1 0,3%

Frente X 443

1 327 74%

3
2 103 23%
3 11 2%
4 1 0,2%
5 1 0,2%

Frente Y 417

1 323 77%

3
2 77 18%
3 16 4%
4 1 0%

La mayor cantidad de secuencias se observan en las mediciones de Frente Y. Por ejemplo, para 
un a= 0.001, se evidencian secuencias en 234 iteraciones de las 1000; de estas, 207 tienen 
una secuencia, es decir, la probabilidad en media de observar una secuencia en un perfil es 
de un 20% aproximadamente. De la misma manera, las probabilidades de observar dos y tres 
secuencias en un mismo perfil son de 2.6% y 1%, respectivamente.
Para las variaciones locales de densidad al interno de una espuma metálica, los resultados 
obtenidos pueden sugerir algunas guías para decidir sobre qué parámetros utilizar para su 
monitoreo. Entre estos se incluyen, el número de perfiles por zona, la distancia entre mediciones 
dentro de cada perfil, el espaciamiento entre perfiles, el valor del nivel de significancia α, así 
como la longitud mínima de secuencias de estadísticos T2.
Las Figuras 5 y 6 brindan ejemplos del comportamiento de los gráficos de Control multivariados 
T2  de Hotelling.  La Figura 5(a) evidencia una secuencia de 3 valores consecutivos del 
estadístico, señalando solo una secuencia de tamaño 3, mientras el grafico de Figura 5(b) no 
señala secuencia, pues ninguna es de tamaño 2 o más grande. La Figura 6(a) muestra una 
secuencia de dos estadísticos consecutivos y en la Figura 6(b) no se detectan secuencias.
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Figura 5.  Gráficos T2 de Hotelling para 1- a = 0.999, mediciones de Canto Y: (a) señala 
secuencia de 3 estadísticos por arriba del UCL; (b) no señala secuencias.

Figura 6.  Gráficos T2 de Hotelling para 1- a =0.99: (a) mediciones de Frente X, que muestran una 
sola secuencia por encima del UCL; (b) mediciones de Frente Y, que no muestran secuencias.
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Conclusiones y recomendaciones
A partir de mediciones de la radiación gamma absorbida por una espuma de aluminio, se ha 
desarrollado un método de caracterización de su densidad mediante indicadores de forma del 
perfil, diseñando un gráfico T² de Hotelling para Fase I e identificando cambios espaciales en 
la media de dichos indicadores.
Se ha estimado el ARL del gráfico de control multivariado e identificado secuencias de 
estadísticos consecutivos que señalan condiciones de fuera de control. La probabilidad de 
observar secuencias de más de dos estadísticos consecutivos fuera de control ha resultado 
ser muy baja, indicando que la espuma se ha producido bajo condiciones estables y por tanto 
en control. 
La propuesta de evaluar secuencias de estadísticos consecutivos constituye un enfoque 
sencillo, pero innovador, que permite detectar posibles fallas internas o irregularidades en 
la uniformidad de la densidad del material, sin recurrir a métodos destructivos. Para futuras 
implementaciones, será necesario estimar el número óptimo de estadísticos consecutivos fuera 
de control que justifique una alerta. Para ello, se recomienda realizar pruebas controladas 
que incluyan defectos inducidos en el material, lo cual permitirá calibrar adecuadamente los 
parámetros del sistema de monitoreo. Entre estos parámetros se sugieren, el número de perfiles 
por zona, la distancia entre mediciones dentro de cada perfil, el espaciamiento entre perfiles, 
el valor del nivel de significancia α, así como la ya señalada longitud mínima de secuencias de 
estadísticos T2 consideradas como señal de posible desviación. 
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