
Tecnología en Marcha
Vol. 38, No 4. Octubre-Diciembre, 2025 191

Caracterización de rendimiento
computacional en plataformas
embebidas para aplicaciones

de Edge AI en modelos de
detección de personas

Performance characterization on embedded
systems for Edge AI person-detection models

Laura Cabrera-Quirós1, Kimberly Orozco-Retana2

Fecha de recepción: 24 de enero, 2025
Fecha de aprobación: 8 de mayo, 2025

Cabrera-Quirós, L; Orozco-Retana, K. Caracterización de
rendimiento computacional en plataformas embebidas para

aplicaciones de Edge AI en modelos de detección de perso-
nas. Tecnología en Marcha. Vol. 38, No 4. Octubre-Diciembre,

2025. Pág. 191-201.

 https://doi.org/10.18845/tm.v38i4.7754

1	 Instituto Tecnológico de Costa Rica. Costa Rica.
 lcabrera@itcr.ac.cr

2	 Instituto Tecnológico de Costa Rica. Costa Rica.
 asdkimberlyasd@gmail.com
 https://orcid.org/0009-0004-8241-4991

https://doi.org/10.18845/tm.v38i4.7754
mailto:lcabrera@itcr.ac.cr
mailto:asdkimberlyasd@gmail.com
https://orcid.org/0009-0004-8241-4991

Tecnología en Marcha
Vol. 38, No 4. Octubre-Diciembre, 2025192

Palabras clave
Edge AI; NVIDIA Jetson Nano; Raspberry Pi 4; MLPerf Inference Benchmark; SSD-MobileNet.

Resumen
Este documento presenta una caracterización del rendimiento del hardware para dos
plataformas de Edge AI: Raspberry Pi 4 y NVIDIA Jetson Nano, para la tarea de detección
automática de personas utilizando un modelo de aprendizaje profundo. Con fines comparativos,
utilizamos el sistema de evaluación MLPerf Inference Benchmark. La caracterización considera
los resultados de un modelo de detección de objetos SSD-Mobilenet utilizando dos conjuntos de
datos diferentes, uno con 80 clases de objetos distintas y otro solo con personas. Las métricas
de comparación consideran la precisión del modelo, la latencia, las consultas procesadas por
segundo y las muestras procesadas por segundo bajo la evaluación de diferentes escenarios
de ejecución.

Keywords
Edge AI; NVIDIA Jetson Nano; Raspberry Pi 4; MLPerf Inference Benchmark; SSD-MobileNet.

Abstract
This paper presents a hardware performance characterization for two Edge AI platforms:
Raspberry Pi 4 and NVIDIA Jetson Nano, for the task of automatic people detection using a deep
learning model. For comparison purposes, we use the MLPerf Inference Benchmark evaluation
system. The characterization considers the results from an SSD-Mobilenet object-detection
model using two different datasets, one with 80 different object classes and another with only
people. Comparison metrics consider model accuracy, latency, queries processed per second,
and samples processed per second under the evaluation of different execution scenarios.

Introducción
Actualmente existe una tendencia de crecimiento vertiginoso en la cantidad de datos disponibles
y la necesidad de su procesamiento autónomo y continuo para diferentes tareas, donde
también la baja latencia en las aplicaciones finales se ha convertido en una demanda común.
La inteligencia artificial (IA) en el borde o Edge AI surge como una solución para procesar los
datos mediante modelos de IA cerca de la fuente de la información mediante dispositivos de
bajo consumo [1].
Para esto, el uso de sistemas embebidos o empotrados como plataformas de soporte se ha
vuelto una práctica normal. Sin embargo, la implementación de IA en sistemas embebidos, en
específico algoritmos de alta demanda computacional como las redes neuronales, requiere
de una reconciliación entre elementos de hardware y software de la plataforma. Alternativas
incluyen el uso de redes neuronales artificiales más pequeñas, en donde los modelos a
utilizar estén cuantificados, comprimidos y/o podados. Por otro lado, los sistemas embebidos
modernos proveen características adicionales como aceleradores, GPUs y NPUs para soportar
dichos modelos.
Por su parte, la detección de objetos consiste en detectar automáticamente instancias de
objetos de una o varias clases conocidas en imágenes o video; y es ampliamente utilizada por
distintas industrias. Los modelos de detección de personas se enfocan específicamente en esta
clase en particular, usando por lo general modelos basados en redes neuronales [2].

Tecnología en Marcha
Vol. 38, No 4. Octubre-Diciembre, 2025 193

Aún cuando el uso de modelos de detección de personas en sistemas embebidos
para aplicaciones Edge AI es un tema de gran impacto y aplicabilidad, existen pocas
caracterizaciones de este tipo de modelos para su uso eficiente en plataformas
embebidas de recurso computacional reducido. En su mayoría, estas comparaciones
y caracterizaciones se enfocan en servidores de alta escala [1]. No obstante,
conocer qué tipo de modelo o algoritmo mapea mejor a una plataforma embebida
en específico le puede permitir a investigadores e industria utilizar de forma óptima sus
recursos. En los últimos años se han desarrollado caracterizaciones de rendimiento utilizando
diversos estándares como AIoTbench, IoTbench o pCAMP [1] para distintos sistemas
embebidos. Sin embargo, muchas de las caracterizaciones realizadas se han enfocado en
tareas como traducción, otras tareas de visión como clasificación y reconocimiento de voz.
Más no consideran la tarea de detección automática de objetos en la diversidad de su dominio.
Este artículo presenta una caracterización de rendimiento para un modelo de detección
ampliamente utilizado en sistemas embebidos, como lo es el MobileNet, en dos plataformas
embebidas aptas para uso en Edge AI: la Raspberry Pi 4 Modelo B y la NVIDIA Jetson Nano.
Para garantizar una comparación correcta y escalable, se utilizó el estándar MLPerf Inference
Benchmark [3].

MLPerf Inference Benchmark
El estándar MLPerf Inference es un conjunto de programas de evaluación para inferencia de
modelos de inteligencia artificial que mide el rendimiento de inferencia del hardware, el software
y los servicios de aprendizaje automático con métricas adecuadas y un método de evaluación
comparativa de manera justa [3]. MLPerf Inference Benchmark Suite incluye programas de
evaluación que cubren tres tareas de inferencia: clasificación de imágenes, detección de
objetos, y reconocimiento de voz y traducción. Estas tareas pueden ser evaluadas bajo cuatro
distintos escenarios: Flujo único, Flujo múltiple, Servidor y Fuera de línea. Dichos escenarios
permiten emular el comportamiento de carga de trabajo de aprendizaje automático que se tiene
en el mundo real para dispositivos móviles, vehículos autónomos, y configuraciones basadas en
la nube. Los cuatros escenarios de ejecución serían:

•	 Flujo único: representa un flujo de consulta de inferencia con un tamaño de muestra de 1,
lo que refleja aplicaciones cliente donde la capacidad de respuesta es crítica. Su métrica
recomendada es la latencia del percentil 90 del flujo de consultas.

•	 Flujo múltiple: representa aplicaciones con un solo flujo de consultas, pero cada consulta
comprende múltiples inferencias, lo que refleja tareas de automatización industrial y
detección remota. Su métrica de rendimiento es el número entero de flujos que admite el
sistema mientras cumple con el requisito de calidad de servicio (QoS, por sus siglas en
inglés).

•	 Servidor: representa aplicaciones en línea donde la llegada de consultas es aleatoria y la
latencia es importante. La métrica de rendimiento es el parámetro de Poisson que indica
las consultas por segundo (QPS, por sus siglas en inglés) que se pueden lograr mientras
se cumple el requisito de QoS.

•	 Fuera de línea: representa aplicaciones de procesamiento por lotes donde todos los
datos están disponibles de inmediato y la latencia no está restringida. La métrica para el
escenario fuera de línea es el rendimiento medido en muestras por segundo.

Tecnología en Marcha
Vol. 38, No 4. Octubre-Diciembre, 2025194

Plataformas embebidas a caracterizar
Adicional a estas plataformas, se utiliza una computadora Dell Inc. Inspiron 5567, como la base
de comparación en el rendimiento de los sistemas embebidos.

Raspberry Pi 4 Modelo B
Raspberry Pi es desarrollada por Raspberry Pi Foundation [4]. Las Raspberry Pi tienen suficiente
capacidad para realizar automatización doméstica, gracias a su microprocesador Quad
core Cortex-A72 (ARM v8) de 64-bit SoC @ 1.8GHz. Esto permite implementar aplicaciones
industriales e implementar computación en el borde para una amplia variedad de aplicaciones,
a bajo costo.

NVIDIA Jetson Nano
Como parte de la primera serie de sistemas NVIDIA Jetson Nano, el kit de desarrollador NVIDIA
Jetson Nano 2GB revolucionó la informática integrada al brindar el poder de la inteligencia
artificial a los dispositivos computacionales de última generación. La tarjeta proporciona una
interfaz GPIO para conectarse a módulos de dispositivos externos. Cuenta con CPU ARM A57
y tiene una GPU Maxwell de 128 núcleos [5].

Modelo de detección y conjunto de datos

Modelo SSD-MobileNet
El enfoque del detector de disparo único o Single Shot Detector (SSD) se basa en una red
convolucional de avance que produce una colección de cuadros delimitadores de tamaño fijo
con puntuaciones para la presencia de instancias de clase en esos cuadros, seguido de un
paso de supresión no máxima para producir las detecciones finales. Las primeras capas de la
red se basan en una arquitectura estándar utilizada para la clasificación de imágenes de alta
calidad, pero truncada antes de las capas de clasificación, llamada red base [6]. En el caso de
este trabajo la red base que utiliza es MobileNet, de modo que la arquitectura final se distingue
con el nombre SSD-MobileNet. Los modelos MobileNet son modelos de clasificación eficientes
para aplicaciones de visión móviles e integradas. Se enfocan principalmente en optimizar la
latencia, generando redes pequeñas construidas principalmente a partir de convoluciones
separables en profundidad. Este tipo de convolución es una forma de convolución factorizada,
que como su nombre lo indica factoriza una convolución estándar en una convolución en
profundidad y una convolución 1x1 denominada convolución puntual [7].

MS-COCO
Microsoft COCO (Common Objects in Context) es un conjunto de datos de detección de
objetos a gran escala, de acceso libre y altamente utilizado mundialmente. El conjunto de
datos comprende imágenes de escenas cotidianas complejas que contienen objetos comunes
en su contexto natural. Los objetos se etiquetan utilizando segmentaciones por instancia para
ayudar a localizarlos de forma precisa [8]. Además, presenta separaciones consistentes
entre conjuntos de entrenamiento, validación y prueba; para fomentar la reproducibilidad y
comparación de resultados.
En 2017 la división de entrenamiento/validación se cambió. El conjunto de prueba utilizado
(COCOval2017) es un subconjunto de 41000 imágenes del conjunto de prueba de 2015 [9]. La
nueva división usa las mismas imágenes y anotaciones. Este conjunto de validación contiene
5000 imágenes con 80 tipos de objetos en la nueva división.

Tecnología en Marcha
Vol. 38, No 4. Octubre-Diciembre, 2025 195

Además, COCO tiene varios tipos de anotaciones: para detección de objetos, detección
de puntos clave, segmentación de cosas, segmentación panóptica, densa y subtítulos de
imágenes. Para este trabajo se utilizaron solamente las anotaciones de objetos usando cuadros
delimitadores.

Metodología y esquema de pruebas

Implementación de MLPerf Inference Benchmark en plataformas embebidas
Para implementar el estándar de pruebas es necesario contar con un sistema operativo funcional
en cada plataforma embebida a evaluar. Para esto en cada sistema se deben contar con los
archivos necesarios para la instalación de MLPerf Inference Benchmark en almacenamiento.
Estos se pueden descargar desde el repositorio dedicado oficial.
Posteriormente, se realiza la instalación del generador de carga o LoadGen, que es un
generador de tráfico para MLPerf Inference que carga el sistema bajo prueba (SUT, por sus
siglas en inglés) y mide su rendimiento. Además, recopila información de registro, depuración y
post-procesamiento de datos [3]. El generador de carga registra las consultas y las respuestas
del SUT y al final de la ejecución reporta las estadísticas, resúmenes de resultados y determina
si la ejecución fue válida.
Una vez instalado el generador de carga, es posible cargar datos y modelos bajo escenarios
específicos de ejecución mediante comandos en la terminal del sistema haciendo uso de
archivos Unix shell.

Preparación de datos
El modelo SSD-MobileNet utiliza el tamaño de imagen de 300x300, por lo que el conjunto de
datos para las pruebas (incluyendo imágenes y anotaciones) debe escalarse a un tamaño de
imagen 300x300. Posteriormente, se extrae un subconjunto de datos de 100 imágenes y se
conserva el archivo dimensionado de anotaciones 300x300 de más de 80 clases de objetos
etiquetados en el COCOval2017. A este subconjunto se le llamará all_objects_300. Además, se
extrae un segundo subconjunto de datos de 100 imágenes que contienen solamente instancias
de la clase ‘persona’, a este se le llamará person_objects_300. En ese caso se extraen de las
anotaciones 300x300 solamente la información de imágenes que tengan instancias de personas.
Es importante enfatizar que el modelo utilizado está pre-entrenado utilizando el conjunto de
entrenamiento de MSCOCO. Los subconjuntos propuestos serán utilizados solamente para
pruebas.

Escenarios de ejecución
Se propone ejecutar 4 pruebas con cada subconjunto de datos extraído de COCOval2017
en cada plataforma embebida, contemplando los cuatro escenarios de ejecución de MLPerf
Inference Benchmark. Cada escenario representa el entorno de funcionamiento de distintas
tareas de inferencia. Aunque algunos de ellos no son específicamente representativos para la
detección de objetos, se busca brindar una caracterización que considere todos los escenarios
y brinde a quien diseñe los subsecuentes sistemas un panorama más completo de las
capacidades de las plataformas en diversos escenarios.
La Figura 1 muestra un esquema que integra los dos conjuntos de datos en el sistema de
pruebas MLPerf Inference Benchmark y la metodología de prueba propuesta.

Tecnología en Marcha
Vol. 38, No 4. Octubre-Diciembre, 2025196

Figura 1. Esquema de integración en MLPerf Inference Benchmark para ejecución de pruebas.

Resultados y discusión
Para las pruebas propuestas y cada una de las plataformas a caracterizar, se calculan las
siguientes métricas de rendimiento: exactitud del modelo de detección, tiempos de inferencia,
latencia del percentil 90, consultas por segundo y muestras por segundo. Los resultados para
las mismas se detallan a continuación.

Pruebas de exactitud
Las pruebas de exactitud permiten medir cuán efectivo es un modelo en la tarea de detectar
objetos, en este caso personas. Para este efecto se utilizan las métricas de precisión promedio
media (mean average precision o mAP) y exactitud (accuracy), las cuales son ampliamente
utilizadas en investigación sobre detección de objetos [10]. Estas se calculan realizando las
pruebas en cada plataforma y utilizando dos subconjuntos de datos mencionados.
El cuadro 1 desglosa los resultados de mAP y exactitud para el modelo SSD-Mobilenet con dos
conjuntos de datos distintos según las plataformas bajo prueba.

Cuadro 1. Métricas de mAP y exactitud para modelo SSD-Mobilenet según
plataformas bajo prueba y conjuntos de datos considerados.

Conjunto de datos:

all_objetcts_300
Conjunto de datos: person_objects_300

Plataforma Modelo mAP (%) Exactitud (%) Modelo mAP (%) Exactitud (%)

Dell Inspiron SSD-Mobilenet 33.55 94.06 SSD-Mobilenet 27.48 62.10

Raspberry Pi 4 SSD-Mobilenet 33.55 94.06 SSD-Mobilenet 27.48 62.10

Jetson Nano
CPU SSD-Mobilenet 33.55 94.06 SSD-Mobilenet 27.48 62.10

Jetson Nano
GPU SSD-Mobilenet 33.55 94.06 SSD-Mobilenet 27.48 62.10

Tecnología en Marcha
Vol. 38, No 4. Octubre-Diciembre, 2025 197

Los resultados muestran que se mantiene la exactitud y mAP en todas las plataformas,
corroborando que el desempeño de SSD-Mobilenet se mantiene consistente independientemente
de la plataforma para un mismo conjunto de datos. De acuerdo con [11], los modelos MobileNet
tienen un rango de mAP dentro del 18% al 25% cuando se realiza inferencia utilizando el
conjunto de datos COCOval2017, lo que se logra replicar.

Tiempo de inferencia
El tiempo de inferencia representa la cantidad de tiempo promedio que tarda un modelo en
detectar un objeto para una entrada dada. Valores más bajos de tiempo de inferencia indican
un mayor rendimiento de la plataforma.

			 (a) 							 (b)

Figura 2. Tiempo de inferencia para todos los escenarios utilizando (a)
Subconjunto all_objects y (b) Subconjunto person_objects.

La Figura 2 muestra los tiempos de inferencia para los cuatro escenarios disponibles
considerando dos conjuntos de datos. La diferencia entre los tiempos de ejecución de acuerdo
con cada plataforma muestra a las dos plataformas embebidas con tiempos de inferencia
similares considerando ambos conjuntos de datos.
Considerando los escenarios de ejecución se observan los tiempos de inferencia más bajos
(rondando los 200 - 300 milisegundos) para el escenario de Flujo Único. Por su parte, el
escenario Fuera de Línea presenta tiempos de inferencia más altos de estas pruebas. En
este escenario el tiempo de inferencia significativamente mayor se asocia el tamaño del
lote a procesar, ya que en este escenario se procesan lotes de imágenes más grandes en
comparación a escenarios de flujo múltiple o único. Un tamaño mayor de lote implica procesar
varias imágenes en paralelo, lo que aumenta el tiempo de inferencia total.

Latencia del percentil 90
Una métrica de rendimiento específica para el escenario de Flujo Único es la latencia del
percentil 90 del flujo de consultas. Este escenario representa un solo flujo de entrada crítico,
como podría ser el flujo proveniente de una cámara de video. La medición específica de la
latencia en este percentil está asociada con el procesamiento del 90% de las consultas en un
tiempo específico.

Tecnología en Marcha
Vol. 38, No 4. Octubre-Diciembre, 2025198

			 (a) 					 		 (b)

Figura 3. Latencia del percentil 90 para escenario Flujo Único utilizando (a)
Subconjunto all_objects y (b) Subconjunto person_objects.

Los resultados de esta latencia al ejecutar las pruebas en cada plataforma se pueden visualizar
en la Figura 3. Considerando estos resultados es posible notar una latencia levemente mayor
para Raspberry Pi 4 respecto a los dos modos de ejecución de Jetson Nano. Además, en
contraste, el uso de diferentes conjuntos de datos no muestra cambios en los resultados de
latencia para SSD-Mobilenet.
En general, los resultados de latencia en Flujo Único para SSD-Mobilenet pueden considerarse
consistentes en la detección para las dos plataformas embebidas, tanto para los objetos de 80
clases como para la categoría específica de ‘persona’. Resultados como baja latencia hace a
SSD-Mobilenet apto para implementaciones críticas donde se tenga un solo flujo de consultas,
aún en plataformas de recursos limitado como la Raspberry Pi 4.
Consultas por segundo
En casos donde se representen aplicaciones con un solo flujo de consultas, pero con múltiples
inferencias como la detección remota con múltiples cámaras de video (Flujo Múltiple), o bien
casos donde la llegada de consultas es aleatoria (Servidor), es importante conocer la métrica
de consultas por segundo o QPS procesadas por el sistema.

		 (a) 							 (b)

Figura 4. Consultas por segundo escenario Flujo Múltiple y servidor utilizando
(a) Subconjunto all_objects y (b) Subconjunto person_objects.

Tecnología en Marcha
Vol. 38, No 4. Octubre-Diciembre, 2025 199

Al realizar este conjunto de pruebas es importante conocer los parámetros fijos de ejecución
en cada escenario, dado que en caso Servidor, la latencia restringe la cantidad de consultas
por segundo que puedan ingresar, así como en el caso de Flujo Múltiple donde la diferencia
entre las muestras exige límites de latencia para procesar una consulta entrante. En este caso
se trabaja con una latencia fija de 50ms previamente establecido por el sistema de pruebas de
inferencia. La Figura 4 muestra los resultados de la aplicación de pruebas en las plataformas
de acuerdo con los dos escenarios relevantes.
De manera general, se nota un desempeño similar en las consultas por segundo en ambos
escenarios para las plataformas embebidas. Estos resultados se complementan con los
obtenidos en la sección de tiempos de inferencia, donde se puede apreciar la congruencia en
los tiempos de inferencia y QPS para el escenario Servidor. El tiempo de inferencia y el QPS
están inversamente relacionados. Un tiempo de inferencia más bajo implica mayor velocidad
de procesamiento de las solicitudes, lo que a su vez conduce a un QPS más alto. Por otro lado,
un tiempo de inferencia más alto disminuye la velocidad de procesamiento de las solicitudes,
lo que resulta en un QPS más bajo. En este caso, los resultados de tiempo de inferencia son
similares para ambos escenarios en ejecución, lo que se refleja en los resultados de la Figura
4. Las diferencias entre plataformas embebidas son mínimas tomando en consideración
ambos escenarios. Además, las diferencias entre conjuntos de datos no marcan una diferencia
significativa para las plataformas embebidas.

Muestras por segundo
Finalmente, el escenario Fuera de Línea no representa ambientes de inferencia críticos sino
aplicaciones de procesamiento por lotes donde todos los datos están disponibles de inmediato.
Así, la latencia no está restringida y el tiempo de inferencia no es crítico, por lo que la métrica
de rendimiento se reduce a las muestras procesadas por segundo. La Figura 5 muestra
los resultados de las muestras por segundo procesadas por segundo bajo la ejecución del
escenario Fuera de Línea.

			 (a) 							 (b)

Figura 5. Muestras procesadas por segundo escenario Fuera de Línea utilizando
(a) Subconjunto all_objects y (b) Subconjunto person_objects

En términos de las plataformas embebidas se aprecia un comportamiento similar en el número
de muestras procesadas por segundo. Los resultados de la Figura 5 se complementan con los
expuestos en la sección de tiempo de inferencia en cuanto al tiempo que le toma al modelo

Tecnología en Marcha
Vol. 38, No 4. Octubre-Diciembre, 2025200

SSD-Mobilenet realizar una inferencia bajo el escenario Fuera de Línea. En el caso de las
plataformas embebidas, la tasa de procesamiento de muestras se encuentra muy por debajo
de la unidad por segundo.

Análisis de rendimiento según escenarios
Considerando las plataformas evaluadas solo en términos de caracterización, es posible
considerar un mayor rendimiento de la Jetson Nano en sus dos modos de ejecución sobre el
rendimiento de Raspberry Pi 4 de manera general. Esto es claro a partir de un rendimiento para
la detección (mAP o exactitud) equivalente entre plataformas, pero con latencias más bajas
para la Jetson Nano en ambas configuraciones. No obstante, esta diferencia es mínima. Resalta
además la similitud de los resultados para la evaluación de la Jetson Nano trabajando con GPU
en comparación a su funcionamiento únicamente como CPU. Intuitivamente, se podría esperar
que al utilizar una GPU cuya naturaleza en paralelización le da mayor poder computacional se
obtengan tiempos de ejecución menores. Sin embargo, aunque hay una reducción en tiempos
y latencias esta es mínima. Este comportamiento puede ser explicado pues para todas las
evaluaciones solo se realizaron pruebas a los modelos, más no así su entrenamiento. Así, es
conocido que la fase de entrenamiento de un modelo de aprendizaje automático es aquella
que requiere mayor poder computacional [12] y, por ende, se beneficia de la presencia de una
GPU. Este no es necesariamente el caso para la fase de prueba, donde se realiza solamente
inferencia.
Ahora bien, si se considera el costo de cada plataforma según el precio por unidad, NVIDIA
Jetson Nano 2GB tiene un precio de mercado de 59$, mientras que Raspberry Pi 4 2GB tiene
un precio de 49.5$. Sin embargo, actualmente NVIDIA no produce esta unidad [13] optando
por un modelo más costoso.
Tomando en cuenta lo anterior, el desempeño de Raspberry Pi 4 la hace una buena contendiente
de la Jetson Nano para la misma aplicación. Las pequeñas diferencias en las métricas de
rendimiento permiten visualizar potenciales implementaciones utilizando modelos más livianos
que realicen la misma tarea que SSD-Mobilenet. Además, considerando el costo por unidad y
la vigencia de la producción, es posible considerar a Raspberry Pi 4 como una plataforma apta
para realizar implementaciones.

Conclusiones y trabajo futuro
Las plataformas Edge AI evaluadas demuestran resultados competentes para la tarea de
detección de personas dentro del rango de mAP usual para modelos con redes base MobileNet
18% - 25% entrenado para la detección de 80 clases distintas.
Si bien se logran resultados muy prometedores para la detección automática de personas
haciendo uso de SSD-MobileNet, este solo brinda un panorama reducido de las verdaderas
capacidades de las plataformas evaluadas. Considerar más arquitecturas de modelos ampliaría
este panorama.
El desempeño de las métricas obtenidas refleja la detección de objetos como una tarea de
múltiples escenarios, dependiendo de la aplicación final. Es posible llevar a la implementación
sistemas que comprendan uno o varios flujos de consultas para escenarios críticos, o bien una
implementación que considere los beneficios de la nube para realizar inferencias cuando las
plataformas de borde así lo requieran. Sin embargo, considerando la capacidad limitada y la
afinidad de las plataformas Edge AI, la inferencia fuera de línea no representa un uso eficiente
de estas.

Tecnología en Marcha
Vol. 38, No 4. Octubre-Diciembre, 2025 201

Como trabajo futuro, se recomienda tomar en cuenta una variedad más amplia de modelos de
detección, así como modelos afinados para la detección exclusiva de personas, con el fin de
acotar la verdadera capacidad de las plataformas evaluadas en este trabajo para una tarea
específica. Para lograr esto es posible considerar alternativas como MLHarness [14] que
aborda las limitaciones de modelos entrenados por MLPerf Inference Benchmark mediante
un sistema escalable de evaluación comparativa que se adapta a éste. Con esta herramienta
sería posible utilizar modelos pre-entrenados de diferentes fuentes para ampliar el rango de
caracterización de las plataformas evaluadas.

Referencias
[1] 	 B. Varghese, N. Wang, D. Bermbach, C.-H. Hong, E. D. Lara, W. Shi y C. Stewart, «A Survey on Edge

Performance Benchmarking,» ACM Computing Surveys, vol. 54, nº 3, pp. 1-33, Abril 2022.
[2] 	 Z. Zhou, K. Chen, Z. Shi, Y. Guo y J. Ye, «Object Detection in 20 Years: A Survey,» Proceedings of the IEEE,

vol. 111, nº 3, pp. 257-276, Marzo 2023.
[3] 	 V. J. Reddi, C. Cheng, D. Kanter, P. Mattson, G. Schmuelling, C.J. Wu, B. Anderson, M. Breughe, M.

Charlebois, W. Chou et al., «MLPerf Inference Benchmark,» ACM/IEEE 47th Annual International Symposium
on Computer Architecture (ISCA), pp. 446-459, 2020.

[4] 	 E. Upton y G. Halfacree, Raspberry Pi user guide, John Wiley & Sons, 2016.
[5] 	 F. N. Uzun, M. Kayrici y B. Akkuzu, «Nvidia Jetson Nano Development Kit,» Programmable Smart Microcontroller

Cards, p. 82, 2021.
[6] 	 W. Liu, D. Anguelov, D. Erhan, C. Szegedy, S. Reed, C.-Y. Fu y A. C. Berg, «SSD: Single Shot MultiBox

Detector,» de European conference on computer vision, 2016.
[7] 	 A. G. Howard, M. Zhu, B. Chen, D. Kalenichenko, W. Wang, T. Weyand, M. Andreetto y H. Adam, «MobileNets:

Efficient Convolutional Neural Networks for Mobile Vision Applications,» Publisher: arXiv Version Number: 1,
2017. [En línea]. Available: https://arxiv.org/abs/1704.04861.

[8] 	 T.-Y. Lin, M. Maire, S. Belongie, J. Hays, P. Perona, D. Ramanan, P. Dollár y C. L. Zitnick, «Microsoft COCO:
Common Objects in Context,» Computer Vision – ECCV 2014, vol. 8693, pp. 740-755, 2014.

[9] 	 «COCO dataset - Common Objects in Context,» [En línea]. Available: https://cocodataset.org/#home. [Último
acceso: Julio 2025].

[10] 	 R. Padilla, S. L. Netto y E. Da Silva, «A survey on performance metrics for object-detection algorithms,» de
International conference on systems, signals and image processing (IWSSIP, 2020.

[11] 	 W. Wang, W. Hong, F. Wang y J. Yu, «GAN-Knowledge Distillation for One-Stage Object Detection,» IEEE
Access, vol. 8, pp. 60719--60727, 2020.

[12] 	 Y. Hu, N. Chen, Y. Hou, X. Lin, B. Jing y P. Liu, «Lightweight deep learning for real-time road distress detection
on mobile devices,» Nature Communications, vol. 16, nº 1, 2025.

[13] 	 NVIDIA Developer, «Documentation Jetson Nano 2GB Developer Kit,» [En línea]. Available: https://developer.
nvidia.com/embedded/learn/jetson-nano-2gb-devkit-user-guide. [Último acceso: Julio 2025].

[14] 	 Y.-H. Chang, J. Pu, W.-m. Hwu y J. Xiong, «MLHarness: A scalable benchmarking system for MLCommons,»
BenchCouncil Transactions on Benchmarks, Standards and Evaluations, vol. 1, 2021.

Declaración sobre uso de Inteligencia Artificial (IA)
Utilizamos la herramienta de inteligencia artificial disponible en https://www.deepl.com/en/
translator para traducir partes de este artículo del inglés al español. La herramienta nos ayudó
a agilizar el proceso de traducción, pero realizamos una revisión exhaustiva para asegurar la
calidad y precisión de las traducciones.

