Tecnologia en Marcha ‘
Vol. 38, N° 4. Octubre-Diciembre, 2025 M 191

Caracterizacion de rendimiento
computacional en plataformas
embebidas para aplicaciones
de Edge Al en modelos de
deteccion de personas

Performance characterization on embedded
systems for Edge Al person-detection models

Laura Cabrera-Quir6s’, Kimberly Orozco-Retana?

Fecha de recepcion: 24 de enero, 2025
Fecha de aprobacion: 8 de mayo, 2025

Cabrera-Quirés, L; Orozco-Retana, K. Caracterizacion de
rendimiento computacional en plataformas embebidas para
aplicaciones de Edge Al en modelos de deteccién de perso-
nas. Tecnologia en Marcha. Vol. 38, N° 4. Octubre-Diciembre,
2025. Pag. 191-201.

d-}) https://doi.org/10.18845/tm.v38i4.7754

1 Instituto Tecnoldgico de Costa Rica. Costa Rica.

® Icabrera@itcr.ac.cr
®@@ 2 Instituto Tecnolégico de Costa Rica. Costa Rica.
© asdkimberlyasd@gmail.com

https://orcid.org/0009-0004-8241-4991

https://doi.org/10.18845/tm.v38i4.7754
mailto:lcabrera@itcr.ac.cr
mailto:asdkimberlyasd@gmail.com
https://orcid.org/0009-0004-8241-4991

‘ Tecnologia en Marcha
192 | IM vol. 38, Ne 4. Octubre-Diciembre, 2025

Palabras clave
Edge Al; NVIDIA Jetson Nano; Raspberry Pi 4; MLPerf Inference Benchmark; SSD-MobileNet.

Resumen

Este documento presenta una caracterizacion del rendimiento del hardware para dos
plataformas de Edge Al: Raspberry Pi 4 y NVIDIA Jetson Nano, para la tarea de deteccion
automatica de personas utilizando un modelo de aprendizaje profundo. Con fines comparativos,
utilizamos el sistema de evaluacion MLPerf Inference Benchmark. La caracterizacion considera
los resultados de un modelo de deteccion de objetos SSD-Mobilenet utilizando dos conjuntos de
datos diferentes, uno con 80 clases de objetos distintas y otro solo con personas. Las métricas
de comparacion consideran la precision del modelo, la latencia, las consultas procesadas por
segundo y las muestras procesadas por segundo bajo la evaluacion de diferentes escenarios
de ejecucion.

Keywords
Edge Al; NVIDIA Jetson Nano; Raspberry Pi 4; MLPerf Inference Benchmark; SSD-MobileNet.

Abstract

This paper presents a hardware performance characterization for two Edge Al platforms:
Raspberry Pi 4 and NVIDIA Jetson Nano, for the task of automatic people detection using a deep
learning model. For comparison purposes, we use the MLPerf Inference Benchmark evaluation
system. The characterization considers the results from an SSD-Mobilenet object-detection
model using two different datasets, one with 80 different object classes and another with only
people. Comparison metrics consider model accuracy, latency, queries processed per second,
and samples processed per second under the evaluation of different execution scenarios.

Introduccién

Actualmente existe una tendencia de crecimiento vertiginoso en la cantidad de datos disponibles
y la necesidad de su procesamiento autbnomo y continuo para diferentes tareas, donde
también la baja latencia en las aplicaciones finales se ha convertido en una demanda comun.
La inteligencia artificial (IA) en el borde o Edge Al surge como una solucién para procesar 1os
datos mediante modelos de |IA cerca de la fuente de la informaciéon mediante dispositivos de
bajo consumo [1].

Para esto, el uso de sistemas embebidos 0 empotrados como plataformas de soporte se ha
vuelto una practica normal. Sin embargo, la implementaciéon de |IA en sistemas embebidos, en
especifico algoritmos de alta demanda computacional como las redes neuronales, requiere
de una reconciliacion entre elementos de hardware y software de la plataforma. Alternativas
incluyen el uso de redes neuronales artificiales mas pequefias, en donde los modelos a
utilizar estén cuantificados, comprimidos y/o podados. Por otro lado, los sistemas embebidos
modernos proveen caracteristicas adicionales como aceleradores, GPUs y NPUs para soportar
dichos modelos.

Por su parte, la deteccion de objetos consiste en detectar automaticamente instancias de
objetos de una o varias clases conocidas en imagenes o video; y es ampliamente utilizada por
distintas industrias. Los modelos de deteccion de personas se enfocan especificamente en esta
clase en particular, usando por lo general modelos basados en redes neuronales [2].

Tecnologia en Marcha ‘
Vol. 38, N° 4. Octubre-Diciembre, 2025 M 193

Aun cuando el uso de modelos de deteccidon de personas en sistemas embebidos
para aplicaciones Edge Al es un tema de gran impacto y aplicabilidad, existen pocas
caracterizaciones de este tipo de modelos para su uso eficiente en plataformas
embebidas de recurso computacional reducido. En su mayoria, estas comparaciones
y caracterizaciones se enfocan en servidores de alta escala [1]. No obstante,
conocer qué tipo de modelo o algoritmo mapea mejor a una plataforma embebida
en especifico le puede permitir a investigadores e industria utilizar de forma Optima sus
recursos. En los uUltimos afos se han desarrollado caracterizaciones de rendimiento utilizando
diversos estandares como AloTbench, loTbench o pCAMP [1] para distintos sistemas
embebidos. Sin embargo, muchas de las caracterizaciones realizadas se han enfocado en
tareas como traduccion, otras tareas de vision como clasificacion y reconocimiento de voz.
Mas no consideran la tarea de deteccion automatica de objetos en la diversidad de su dominio.

Este articulo presenta una caracterizacion de rendimiento para un modelo de deteccion
ampliamente utilizado en sistemas embebidos, como lo es el MobileNet, en dos plataformas
embebidas aptas para uso en Edge Al: la Raspberry Pi 4 Modelo B y la NVIDIA Jetson Nano.
Para garantizar una comparacion correcta y escalable, se utilizé el estandar MLPerf Inference
Benchmark [3].

MLPerf Inference Benchmark

El estandar MLPerf Inference es un conjunto de programas de evaluacion para inferencia de
modelos de inteligencia artificial que mide el rendimiento de inferencia del hardware, el software
y los servicios de aprendizaje automatico con métricas adecuadas y un método de evaluacion
comparativa de manera justa [3]. MLPerf Inference Benchmark Suite incluye programas de
evaluacion que cubren tres tareas de inferencia: clasificacion de imagenes, deteccion de
objetos, y reconocimiento de voz y traduccion. Estas tareas pueden ser evaluadas bajo cuatro
distintos escenarios: Flujo unico, Flujo multiple, Servidor y Fuera de linea. Dichos escenarios
permiten emular el comportamiento de carga de trabajo de aprendizaje automatico que se tiene
en el mundo real para dispositivos moéviles, vehiculos autbnomos, y configuraciones basadas en
la nube. Los cuatros escenarios de ejecucion serian:

e Flujo unico: representa un flujo de consulta de inferencia con un tamafio de muestra de 1,
lo que refleja aplicaciones cliente donde la capacidad de respuesta es critica. Su métrica
recomendada es la latencia del percentil 90 del flujo de consultas.

e Flujo multiple: representa aplicaciones con un solo flujo de consultas, pero cada consulta
comprende multiples inferencias, o que refleja tareas de automatizacion industrial vy
deteccion remota. Su métrica de rendimiento es el numero entero de flujos que admite el
sistema mientras cumple con el requisito de calidad de servicio (QoS, por sus siglas en
inglés).

e Servidor: representa aplicaciones en linea donde la llegada de consultas es aleatoria y la
latencia es importante. La métrica de rendimiento es el parametro de Poisson que indica
las consultas por segundo (QPS, por sus siglas en inglés) que se pueden lograr mientras
se cumple el requisito de QoS.

e Fuera de linea: representa aplicaciones de procesamiento por lotes donde todos los
datos estan disponibles de inmediato y la latencia no esta restringida. La métrica para el
escenario fuera de linea es el rendimiento medido en muestras por segundo.

‘ Tecnologia en Marcha
194 | IM vol. 38, N 4. Octubre-Diciembre, 2025

Plataformas embebidas a caracterizar

Adicional a estas plataformas, se utiliza una computadora Dell Inc. Inspiron 5567, como la base
de comparacion en el rendimiento de los sistemas embebidos.

Raspberry Pi 4 Modelo B

Raspberry Pi es desarrollada por Raspberry Pi Foundation [4]. Las Raspberry Pi tienen suficiente
capacidad para realizar automatizacion doméstica, gracias a su microprocesador Quad
core Cortex-A72 (ARM v8) de 64-bit SoC @ 1.8GHz. Esto permite implementar aplicaciones
industriales e implementar computacion en el borde para una amplia variedad de aplicaciones,
a bajo costo.

NVIDIA Jetson Nano

Como parte de la primera serie de sistemas NVIDIA Jetson Nano, el kit de desarrollador NVIDIA
Jetson Nano 2GB revolucioné la informética integrada al brindar el poder de la inteligencia
artificial a los dispositivos computacionales de Ultima generacion. La tarjeta proporciona una
interfaz GPIO para conectarse a moédulos de dispositivos externos. Cuenta con CPU ARM A57
y tiene una GPU Maxwell de 128 nucleos [5].

Modelo de deteccién y conjunto de datos

Modelo SSD-MobileNet

El enfoque del detector de disparo unico o Single Shot Detector (SSD) se basa en una red
convolucional de avance que produce una coleccion de cuadros delimitadores de tamafio fijo
con puntuaciones para la presencia de instancias de clase en esos cuadros, seguido de un
paso de supresion no maxima para producir las detecciones finales. Las primeras capas de la
red se basan en una arquitectura estandar utilizada para la clasificacion de imagenes de alta
calidad, pero truncada antes de las capas de clasificacion, llamada red base [6]. En el caso de
este trabajo la red base que utiliza es MobileNet, de modo que la arquitectura final se distingue
con el nombre SSD-MobileNet. Los modelos MobileNet son modelos de clasificacion eficientes
para aplicaciones de vision moviles e integradas. Se enfocan principalmente en optimizar la
latencia, generando redes pequefias construidas principalmente a partir de convoluciones
separables en profundidad. Este tipo de convoluciéon es una forma de convolucion factorizada,
que como su nombre lo indica factoriza una convolucién estandar en una convolucion en
profundidad y una convolucion 1x1 denominada convolucion puntual [7].

MS-COCO

Microsoft COCO (Common Objects in Context) es un conjunto de datos de deteccion de
objetos a gran escala, de acceso libre y altamente utilizado mundialmente. El conjunto de
datos comprende imagenes de escenas cotidianas complejas que contienen objetos comunes
en su contexto natural. Los objetos se etiquetan utilizando segmentaciones por instancia para
ayudar a localizarlos de forma precisa [8]. Ademas, presenta separaciones consistentes
entre conjuntos de entrenamiento, validacion y prueba; para fomentar la reproducibilidad y
comparacion de resultados.

En 2017 la division de entrenamiento/validacion se cambi6é. El conjunto de prueba utilizado
(COCOval2017) es un subconjunto de 41000 imagenes del conjunto de prueba de 2015 [9]. La
nueva divisidn usa las mismas imagenes y anotaciones. Este conjunto de validacion contiene
5000 imagenes con 80 tipos de objetos en la nueva division.

Tecnologia en Marcha ‘
Vol. 38, N° 4. Octubre-Diciembre, 2025 M 195

Ademéas, COCO tiene varios tipos de anotaciones: para deteccion de objetos, deteccion
de puntos clave, segmentacion de cosas, segmentacion panodptica, densa y subtitulos de
imagenes. Para este trabajo se utilizaron solamente las anotaciones de objetos usando cuadros
delimitadores.

Metodologia y esquema de pruebas

Implementacion de MLPerf Inference Benchmark en plataformas embebidas

Para implementar el estandar de pruebas es necesario contar con un sistema operativo funcional
en cada plataforma embebida a evaluar. Para esto en cada sistema se deben contar con los
archivos necesarios para la instalacion de MLPerf Inference Benchmark en almacenamiento.
Estos se pueden descargar desde el repositorio dedicado oficial.

Posteriormente, se realiza la instalacion del generador de carga o LoadGen, que es un
generador de trafico para MLPerf Inference que carga el sistema bajo prueba (SUT, por sus
siglas en inglés) y mide su rendimiento. Ademas, recopila informacion de registro, depuracion y
post-procesamiento de datos [3]. El generador de carga registra las consultas y las respuestas
del SUT y al final de la ejecucion reporta las estadisticas, resimenes de resultados y determina
si la ejecucion fue valida.

Una vez instalado el generador de carga, es posible cargar datos y modelos bajo escenarios
especificos de ejecucion mediante comandos en la terminal del sistema haciendo uso de
archivos Unix shell.

Preparacion de datos

El modelo SSD-MobileNet utiliza el tamafio de imagen de 300x300, por lo que el conjunto de
datos para las pruebas (incluyendo imagenes y anotaciones) debe escalarse a un tamafio de
imagen 300x300. Posteriormente, se extrae un subconjunto de datos de 100 imagenes y se
conserva el archivo dimensionado de anotaciones 300x300 de mas de 80 clases de objetos
etiquetados en el COCOval2017. A este subconjunto se le llamara all_objects_300. Ademas, se
extrae un segundo subconjunto de datos de 100 imagenes que contienen solamente instancias
de la clase ‘persona’, a este se le llamaré person_objects_300. En ese caso se extraen de las
anotaciones 300x300 solamente la informacion de imagenes que tengan instancias de personas.

Es importante enfatizar que el modelo utilizado esta pre-entrenado utilizando el conjunto de
entrenamiento de MSCOCO. Los subconjuntos propuestos seran utilizados solamente para
pruebas.

Escenarios de ejecucion

Se propone ejecutar 4 pruebas con cada subconjunto de datos extraido de COCOval2017
en cada plataforma embebida, contemplando los cuatro escenarios de ejecucion de MLPerf
Inference Benchmark. Cada escenario representa el entorno de funcionamiento de distintas
tareas de inferencia. Aunque algunos de ellos no son especificamente representativos para la
deteccion de objetos, se busca brindar una caracterizacion que considere todos los escenarios
y brinde a quien disefie los subsecuentes sistemas un panorama mas completo de las
capacidades de las plataformas en diversos escenarios.

La Figura 1 muestra un esquema que integra los dos conjuntos de datos en el sistema de
pruebas MLPerf Inference Benchmark y la metodologia de prueba propuesta.

‘ Tecnologia en Marcha
196 Vol. 38, N° 4. Octubre-Diciembre, 2025

i B i
Conjunto de datos: Conjunto de datos:
100 imagenes y anotaciones de 100 imagenes y anotaciones de
COCOval2017 con 80 categorias COCOval2017 con categoria
de objetos 'persona’
o g/ 9 4
E’ r A : ; (g 4) :
Sistema bajo prueba (SUT) : i Sistema bajo prueba (SUT) :
A h 4
Generador de carga Generador de carga
(LoadGen) (LoadGen)
N
Registro de Registro de
exactitud exactitud

Figura 1. Esquema de integracion en MLPerf Inference Benchmark para ejecucion de pruebas.

Resultados y discusion

Para las pruebas propuestas y cada una de las plataformas a caracterizar, se calculan las
siguientes métricas de rendimiento: exactitud del modelo de deteccion, tiempos de inferencia,
latencia del percentil 90, consultas por segundo y muestras por segundo. Los resultados para
las mismas se detallan a continuacion.

Pruebas de exactitud

Las pruebas de exactitud permiten medir cuan efectivo es un modelo en la tarea de detectar
objetos, en este caso personas. Para este efecto se utilizan las métricas de precision promedio
media (mean average precision 0 mAP) y exactitud (accuracy), las cuales son ampliamente
utilizadas en investigacion sobre deteccion de objetos [10]. Estas se calculan realizando las
pruebas en cada plataforma y utilizando dos subconjuntos de datos mencionados.

El cuadro 1 desglosa los resultados de mAP y exactitud para el modelo SSD-Mobilenet con dos
conjuntos de datos distintos segun las plataformas bajo prueba.

Cuadro 1. Métricas de mAP y exactitud para modelo SSD-Mobilenet segun
plataformas bajo prueba y conjuntos de datos considerados.

Dell Inspiron SSD-Mobilenet 818,55 94.06 SSD-Mobilenet 27.48 62.10

Raspberry Pi 4 | SSD-Mobilenet 3356 94.06 SSD-Mobilenet 27.48 62.10

Jetson Nano
CPU

Jetson Nano
GPU

SSD-Mobilenet 3355 94.06 SSD-Mobilenet 27.48 62.10

SSD-Mobilenet 33.55 94.06 SSD-Mobilenet 27.48 62.10

Tecnologia en Marcha ‘
Vol. 38, N° 4. Octubre-Diciembre, 2025 M 197

Los resultados muestran que se mantiene la exactitud y mAP en todas las plataformas,
corroborando que el desempefio de SSD-Mobilenet se mantiene consistente independientemente
de la plataforma para un mismo conjunto de datos. De acuerdo con [11], los modelos MobileNet
tienen un rango de mAP dentro del 18% al 25% cuando se realiza inferencia utilizando el
conjunto de datos COCOval2017, lo que se logra replicar.

Tiempo de inferencia

El tiempo de inferencia representa la cantidad de tiempo promedio que tarda un modelo en
detectar un objeto para una entrada dada. Valores mas bajos de tiempo de inferencia indican
un mayor rendimiento de la plataforma.

7000 {1 ™= Dell Inspiron oo 7000 { ™= Dell Inspiroq
Raspberry Pi 4 N a o Raspberry Pi 4
6000 4 Jetson Nano CPU] E] 6000 4 Jetson Nano CPU
Jetson Nano GPU n Jetson Nano GPU] o
—~
m m a 0 S
£ 5000 4 8 5000 A < ©
c [= o
=} 3 ;1
7 g
& 4000 1 £ 4000
E z
8 3000 - g 3000 A
€ €
E < m oo m Q@ ~m e
2000 ~ 2 S szz n '_2000_ + ¢ in © Q09
Eao D888 o 2Re gRAd
o9 FR=R=K=] © 24 m o oo oo m
N m < - S R m ~ © m - - o
1000 A ekt B & 1000 - a-Hoa N3 g
Mo ~N ; O m<g o M ©
Qo w g 8] 2
g N NN = m N NN = l
0 T — T T 0 " — ! I
Flujo Unico Flujo Mdltiple Servidor Fuera de Linea Flujo Unico Flujo Mdltiple Servidor Fuera de Linea

(a) (b)

Figura 2. Tiempo de inferencia para todos los escenarios utilizando (a)
Subconjunto all_objectsy (b) Subconjunto person_objects.

La Figura 2 muestra los tiempos de inferencia para los cuatro escenarios disponibles
considerando dos conjuntos de datos. La diferencia entre los tiempos de ejecucion de acuerdo
con cada plataforma muestra a las dos plataformas embebidas con tiempos de inferencia
similares considerando ambos conjuntos de datos.

Considerando los escenarios de ejecucion se observan los tiempos de inferencia mas bajos
(rondando los 200 - 300 milisegundos) para el escenario de Flujo Unico. Por su parte, el
escenario Fuera de Linea presenta tiempos de inferencia mas altos de estas pruebas. En
este escenario el tiempo de inferencia significativamente mayor se asocia el tamafio del
lote a procesar, ya que en este escenario se procesan lotes de imagenes mas grandes en
comparacion a escenarios de flujo multiple o Unico. Un tamafio mayor de lote implica procesar
varias imagenes en paralelo, lo que aumenta el tiempo de inferencia total.

Latencia del percentil 90

Una métrica de rendimiento especifica para el escenario de Flujo Unico es la latencia del
percentil 90 del flujo de consultas. Este escenario representa un solo flujo de entrada critico,
como podria ser el flujo proveniente de una camara de video. La medicion especifica de la
latencia en este percentil esta asociada con el procesamiento del 90% de las consultas en un
tiempo especifico.

‘ Tecnologia en Marcha
108 | IMl vol. 38 N° 4. Octubre-Diciembre, 2025

0.30 0.30

0'_1

Tiempo (segundos)
e o
=]
w (=]

Tiempo (segundos)
e o
=]
w (=]

o
o
o
o
o
o

G’
)
0.05 o> 0.05 of
oSt

0.00 - 0.00 -

Dell Raspberry Jetson Jetson Dell Raspberry Jetson Jetson
Inspiron Pi 4 Nano CPU Nano GPU Inspiron Pi 4 Nano CPU Nano GPU

(a) all_object (b) person_object
(a) (b)

Figura 3. Latencia del percentil 90 para escenario Flujo Unico utilizando (a)
Subconjunto all_objectsy (b) Subconjunto person_objects.

Los resultados de esta latencia al ejecutar las pruebas en cada plataforma se pueden visualizar
en la Figura 3. Considerando estos resultados es posible notar una latencia levemente mayor
para Raspberry Pi 4 respecto a los dos modos de ejecucion de Jetson Nano. Ademas, en
contraste, el uso de diferentes conjuntos de datos no muestra cambios en los resultados de
latencia para SSD-Mobilenet.

En general, los resultados de latencia en Flujo Unico para SSD-Mobilenet pueden considerarse
consistentes en la deteccion para las dos plataformas embebidas, tanto para los objetos de 80
clases como para la categoria especifica de ‘persona’. Resultados como baja latencia hace a
SSD-Mobilenet apto para implementaciones criticas donde se tenga un solo flujo de consultas,
aun en plataformas de recursos limitado como la Raspberry Pi 4.

Consultas por segundo

En casos donde se representen aplicaciones con un solo flujo de consultas, pero con multiples
inferencias como la deteccion remota con multiples camaras de video (Flujo Mdltiple), o bien
casos donde la llegada de consultas es aleatoria (Servidor), es importante conocer la métrica
de consultas por segundo o QPS procesadas por el sistema.

10 10

mem Dell Inspiron q;:;\ mmm Dell Inspiron
Raspberry Pi 4 Q;P Raspberry Pi 4
a Jetson Nano CPU g Jetson Nano CPU
Jetson Nano GPU Jetson Nano GPU
2
oV
6 6
v w
o o
o (=3
4 4
27 D & P SR 21 o '1,6\6 '{?{\ 22 NN
ST~ 2 oV S gV o™ A A ©F Y P P
SMENN T P S ST & T2
| I _ oL I B
Flujo Mdltiple Servidor Flujo Mdltiple Servidor
(a) all_object (b) person_object
(a) (b)

Figura 4. Consultas por segundo escenario Flujo Mdltiple y servidor utilizando
(a) Subconjunto all_objects y (b) Subconjunto person_objects.

Tecnologia en Marcha ‘
Vol. 38, N° 4. Octubre-Diciembre, 2025 IMB| 199

Al realizar este conjunto de pruebas es importante conocer los parametros fijos de ejecucion
en cada escenario, dado que en caso Servidor, la latencia restringe la cantidad de consultas
por segundo que puedan ingresar, asi como en el caso de Flujo Multiple donde la diferencia
entre las muestras exige limites de latencia para procesar una consulta entrante. En este caso
se trabaja con una latencia fija de 50ms previamente establecido por el sistema de pruebas de
inferencia. La Figura 4 muestra los resultados de la aplicacion de pruebas en las plataformas
de acuerdo con los dos escenarios relevantes.

De manera general, se nota un desempefio similar en las consultas por segundo en ambos
escenarios para las plataformas embebidas. Estos resultados se complementan con los
obtenidos en la seccion de tiempos de inferencia, donde se puede apreciar la congruencia en
los tiempos de inferencia y QPS para el escenario Servidor. El tiempo de inferencia y el QPS
estan inversamente relacionados. Un tiempo de inferencia mas bajo implica mayor velocidad
de procesamiento de las solicitudes, lo que a su vez conduce a un QPS mas alto. Por otro lado,
un tiempo de inferencia mas alto disminuye la velocidad de procesamiento de las solicitudes,
lo que resulta en un QPS mas bajo. En este caso, los resultados de tiempo de inferencia son
similares para ambos escenarios en ejecucion, 10 que se refleja en los resultados de la Figura
4. Las diferencias entre plataformas embebidas son minimas tomando en consideracion
ambos escenarios. Ademas, las diferencias entre conjuntos de datos no marcan una diferencia
significativa para las plataformas embebidas.

Muestras por segundo

Finalmente, el escenario Fuera de Linea no representa ambientes de inferencia criticos sino
aplicaciones de procesamiento por lotes donde todos los datos estan disponibles de inmediato.
Asi, la latencia no esta restringida y el tiempo de inferencia no es critico, por lo que la métrica
de rendimiento se reduce a las muestras procesadas por segundo. La Figura 5 muestra
los resultados de las muestras por segundo procesadas por segundo bajo la ejecucion del
escenario Fuera de Linea.

2.00 2.00
1.75 1.75 A >
O
N
1.50 1.50 4
[=] = [=]
g xf‘"’q 2
3 1.25 3 1.25 4
[[
wy vy
S 1.00 S 1.00 4
B B
c c
B 0.75 T 0.75
> =]
= =
0.50 0.50
3D o>
20 o 40 0™ 0o 70
0.25 o o o 0.25 - o °© o
0.00 T T T 0.00 - T T T
Dell Raspberry Jetson Jetson Dell Raspberry Jetson Jetson
Inspiron Pi 4 Nano CPU Nano GPU Inspiron Pi 4 Nano CPU Nano GPU
(a) ali_object (b) person_object

(a) (b)

Figura 5. Muestras procesadas por segundo escenario Fuera de Linea utilizando
(a) Subconjunto all_objectsy (b) Subconjunto person_objects

En términos de las plataformas embebidas se aprecia un comportamiento similar en el nimero
de muestras procesadas por segundo. Los resultados de la Figura 5 se complementan con los
expuestos en la seccion de tiempo de inferencia en cuanto al tiempo que le toma al modelo

‘ Tecnologia en Marcha
200 | IMl vol. 38, N° 4. Octubre-Diciembre, 2025

SSD-Mobilenet realizar una inferencia bajo el escenario Fuera de Linea. En el caso de las
plataformas embebidas, la tasa de procesamiento de muestras se encuentra muy por debajo
de la unidad por segundo.

Andlisis de rendimiento segun escenarios

Considerando las plataformas evaluadas solo en términos de caracterizacion, es posible
considerar un mayor rendimiento de la Jetson Nano en sus dos modos de ejecucion sobre el
rendimiento de Raspberry Pi 4 de manera general. Esto es claro a partir de un rendimiento para
la deteccion (mAP o exactitud) equivalente entre plataformas, pero con latencias mas bajas
para la Jetson Nano en ambas configuraciones. No obstante, esta diferencia es minima. Resalta
ademas la similitud de los resultados para la evaluacion de la Jetson Nano trabajando con GPU
en comparacion a su funcionamiento unicamente como CPU. Intuitivamente, se podria esperar
que al utilizar una GPU cuya naturaleza en paralelizaciéon le da mayor poder computacional se
obtengan tiempos de ejecucién menores. Sin embargo, aunque hay una reduccion en tiempos
y latencias esta es minima. Este comportamiento puede ser explicado pues para todas las
evaluaciones solo se realizaron pruebas a los modelos, mas no asi su entrenamiento. Asi, es
conocido que la fase de entrenamiento de un modelo de aprendizaje automatico es aquella
que requiere mayor poder computacional [12] y, por ende, se beneficia de la presencia de una
GPU. Este no es necesariamente el caso para la fase de prueba, donde se realiza solamente
inferencia.

Ahora bien, si se considera el costo de cada plataforma segun el precio por unidad, NVIDIA
Jetson Nano 2GB tiene un precio de mercado de 59$, mientras que Raspberry Pi 4 2GB tiene
un precio de 49.5%. Sin embargo, actualmente NVIDIA no produce esta unidad [13] optando
por un modelo mas costoso.

Tomando en cuenta lo anterior, el desempefio de Raspberry Pi 4 la hace una buena contendiente
de la Jetson Nano para la misma aplicacion. Las pequefas diferencias en las métricas de
rendimiento permiten visualizar potenciales implementaciones utilizando modelos mas livianos
que realicen la misma tarea que SSD-Mobilenet. Ademas, considerando el costo por unidad y
la vigencia de la produccion, es posible considerar a Raspberry Pi 4 como una plataforma apta
para realizar implementaciones.

Conclusiones y trabajo futuro

Las plataformas Edge Al evaluadas demuestran resultados competentes para la tarea de
deteccion de personas dentro del rango de mAP usual para modelos con redes base MobileNet
18% - 25% entrenado para la deteccion de 80 clases distintas.

Si bien se logran resultados muy prometedores para la deteccion automatica de personas
haciendo uso de SSD-MobileNet, este solo brinda un panorama reducido de las verdaderas
capacidades de las plataformas evaluadas. Considerar mas arquitecturas de modelos ampliaria
este panorama.

El desempefio de las métricas obtenidas refleja la deteccion de objetos como una tarea de
multiples escenarios, dependiendo de la aplicacion final. Es posible llevar a la implementacion
sistemas que comprendan uno o varios flujos de consultas para escenarios criticos, o bien una
implementacion que considere los beneficios de la nube para realizar inferencias cuando las
plataformas de borde asi lo requieran. Sin embargo, considerando la capacidad limitada y la
afinidad de las plataformas Edge Al, la inferencia fuera de linea no representa un uso eficiente
de estas.

Tecnologia en Marcha ‘
Vol. 38, N° 4. Octubre-Diciembre, 2025 M 201

Como trabajo futuro, se recomienda tomar en cuenta una variedad mas amplia de modelos de
deteccion, asi como modelos afinados para la deteccion exclusiva de personas, con el fin de
acotar la verdadera capacidad de las plataformas evaluadas en este trabajo para una tarea
especifica. Para lograr esto es posible considerar alternativas como MLHarness [14] que
aborda las limitaciones de modelos entrenados por MLPerf Inference Benchmark mediante
un sistema escalable de evaluacién comparativa que se adapta a éste. Con esta herramienta
seria posible utilizar modelos pre-entrenados de diferentes fuentes para ampliar el rango de
caracterizacion de las plataformas evaluadas.

Referencias
[1] B. Varghese, N. Wang, D. Bermbach, C.-H. Hong, E. D. Lara, W. Shi y C. Stewart, «A Survey on Edge
Performance Benchmarking,» ACM Computing Surveys, vol. 54, n° 3, pp. 1-33, Abril 2022.

2] Z. Zhou, K. Chen, Z. Shi, Y. Guo y J. Ye, «Object Detection in 20 Years: A Survey,» Proceedings of the IEEE,
vol. 111, n° 3, pp. 257-276, Marzo 2023.

[3] V. J. Reddi, C. Cheng, D. Kanter, P. Mattson, G. Schmuelling, C.J. Wu, B. Anderson, M. Breughe, M.
Charlebois, W. Chou et al., «<MLPerf Inference Benchmark,» ACM/IEEE 47th Annual International Symposium
on Computer Architecture (ISCA), pp. 446-459, 2020.

(4] E. Upton y G. Halfacree, Raspberry Pi user guide, John Wiley & Sons, 2016.
[5] F.N. Uzun, M. Kayriciy B. Akkuzu, «Nvidia Jetson Nano Development Kit,» Programmable Smart Microcontroller
Cards, p. 82, 2021.

[6] W. Liu, D. Anguelov, D. Erhan, C. Szegedy, S. Reed, C.-Y. Fu y A. C. Berg, «SSD: Single Shot MultiBox
Detector,» de European conference on computer vision, 2016.

[7] A. G. Howard, M. Zhu, B. Chen, D. Kalenichenko, W. Wang, T. Weyand, M. Andreetto y H. Adam, «MobileNets:
Efficient Convolutional Neural Networks for Mobile Vision Applications,» Publisher: arXiv Version Number: 1,
2017. [En linea]. Available: https://arxiv.org/abs/1704.04861.

[8] T.-Y. Lin, M. Maire, S. Belongie, J. Hays, P. Perona, D. Ramanan, P. Dollar y C. L. Zitnick, «Microsoft COCO:
Common Objects in Context,» Computer Vision — ECCV 2014, vol. 8693, pp. 740-755, 2014.

9] «COCO dataset - Common Objects in Context,» [En linea]. Available: https://cocodataset.org/#home. [Ultimo
acceso: Julio 2025].

[10] R. Padilla, S. L. Netto y E. Da Silva, «A survey on performance metrics for object-detection algorithms,» de
International conference on systems, signals and image processing (IWSSIP, 2020.

[11] W. Wang, W. Hong, F. Wang y J. Yu, «<GAN-Knowledge Distillation for One-Stage Object Detection,» IEEE
Access, vol. 8, pp. 60719--60727, 2020.

[12] Y. Hu, N.Chen, Y. Hou, X. Lin, B. Jing y P. Liu, «Lightweight deep learning for real-time road distress detection
on mobile devices,» Nature Communications, vol. 16, n° 1, 2025.

[13] NVIDIA Developer, «<Documentation Jetson Nano 2GB Developer Kit,» [En linea]. Available: https://developer.
nvidia.com/embedded/learn/jetson-nano-2gb-devkit-user-guide. [Ultimo acceso: Julio 2025].

[14] Y.-H. Chang, J. Pu, W.-m. Hwu y J. Xiong, «MLHarness: A scalable benchmarking system for MLCommons, »
BenchCouncil Transactions on Benchmarks, Standards and Evaluations, vol. 1, 2021.

Declaraciéon sobre uso de Inteligencia Artificial (1A)

Utilizamos la herramienta de inteligencia artificial disponible en https://www.deepl.com/en/
translator para traducir partes de este articulo del inglés al espafiol. La herramienta nos ayuddé
a agilizar el proceso de traduccion, pero realizamos una revision exhaustiva para asegurar la
calidad y precision de las traducciones.

