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Abstract
The thermal conductivity, κ, of thin GeSn semiconductors with Sn concentration of 12 at.% was 
studied by the 3-omega method. Accent is put on room temperature characterization where a 
small lattice conductivity of 4.5W/m-K was extracted. Similar performance was found but using 
the Raman thermometry optical method indicating the reliability of the measurements and 
showing GeSn alloys as promising materials for thermoelectric applications.
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Resumen
La conductividad térmica, , the semiconductores delgados de GeSn con concentraciones 
de Sn del 12% fue estudiada usando el método 3-omega. Especial atención se pone en la 
caracterización a temperatura ambiente en donde se extrajo una pequeña conductividad de 
la red de 4.5W/m-K. Un comportamiento similar fue encontrado pero usando el método óptico 
de Termometría Raman indicando la confiabilidad de las mediciones y mostrando que las 
aleaciones de GeSn son materiales prometedores para aplicaciones termoeléctricas

Introduction
In thermoelectric materials the conversion between thermal and electrical energy takes place. 
This process involves heat transport through both electrons and phonons. The efficiency of this 
process is defined by the figure of merit ZT which relates the thermal conductivity, electrical 
conductivity, and Seebeck coefficient of the material for a specific temperature. To obtain a high 
ZT, large Seebeck coefficient and electrical conductivity are required as well as a low thermal 
conductivity.
Ge1-xSnx binary alloys have recently got increasing attention due to their photonic and electronic 
applications, and its compatibility with the CMOS technology. The thermal conductivity (κ) of this 
material was only recently investigated for different Sn concentrations by using optical Raman 
thermometry (~4W/m-K for Ge0.88Sn0.12) [1] showing its relevance for thermoelectric applications 
at room temperature. In this work, a study of the thermal conductivity of GeSn alloys was 
performed but using the electrical 3-omega method. Layers of different thicknesses and similar 
Sn concentration.

Experimental methods
Growth, Characterization, and Device Fabrication
The Ge1-xSnx layers were grown by chemical vapor deposition (CVD) on a Ge post-deposition 
annealed (GePDA) buffer on Si(100) wafers. The composition and thickness of the samples 
were determined by fitting the Rutherford backscattering (RBS) spectrum. A set of 5 samples 
with similar GePDA (around 350nm) and Sn concentration (~ 12 at.%) with different GeSn 
thicknesses were chosen for the measurements.
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A 200 nm layer of SiO2 was deposited for electrical isolation on the Ge0.88Sn0.12 surface. Afterward, 
by optical lithography and lift-off a 50nm-Cr/250nm-Au strip was deposited. The metal strip acts 
simultaneously as heater and thermometer, as shown in the inset in Fig.2. Devices with different 
dimensions for the heater stripe were fabricated with width (2b) and length (l) values of 10, 15, 
20 μm and 1000, 1500 μm, respectively.

Three-Omega Method
The thermal conductivity can be extracted using the 3ω–method [2]. By applying a current with 
frequency ω on a conductor (e.g. our heater stripe) the power dissipation generates heat waves 
with a 2ω oscillatory component. The heat induces a variation of the conductor resistance so that 
the voltage drop, adding a 3ω oscillatory component. Finally, the temperature oscillation (δT2ω) 
is expressed in terms of both 1ω-voltage (V1ω) and 3ω-voltage (V3ω):

𝛿𝛿𝛿𝛿!" =
2
𝛼𝛼	
𝑅𝑅𝑅𝑅(𝑉𝑉#")
𝑅𝑅𝑅𝑅(𝑉𝑉$")

 
			   (1)

where α is the temperature coefficient of the heater. 
This δT2ω can also be obtained by modeling a semi-infinite substrate with several thin layers and 
a finite-width stripe heater as in [2] including the explicit constant value derived in [3]:
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where γ is the Euler gamma (γ = 0.5772…), D is the thermal diffusivity of the substrate, τ is the 
thickness of the thin layers, and P is the input power.
The first term corresponds to the temperature variation δT2ω in the substrate while the sum 
of terms represents each of the thin layers. This theoretical equation leads to the so-called 
differential 3ω-method, which is basically the subtraction of measurements to take the Si 
substrate and Ge buffer out of the final calculation. In this case, the δTA of a Si/GePDA/SiO2 is 
subtracted from the δTB of a Si/GePDA/GeSn/SiO2 to isolate the GeSn δTdiff of interest and finally 
calculate the  value of interest: 
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Finally, equating δT in (1) and (2) leads to,
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A lock-in amplifier supplies the 1ω AC voltage using one of the two pairs of the device 
contacts and the other two are used for measuring the 3rd harmonic component of the input 
voltage frequency that corresponds to the V3ω (see inset in Fig. 2). Three measurements were 
made on the samples: frequency scan, voltage scan, and resistance. For the frequency scan 
measurement ω is variated at a fixed V1ω. For the voltage scan measurement, the V1ω is variated 
at fixed ω. In both V3ω is extracted. Finally, for the resistance measurement V1ω is variated at a 
certain ω and the current is measured. 
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Results
Fig.1a clearly shows the linear dependency with ln(ω) for the in-phase component and a 
constant behavior for the out-of-phase component of V3ω, as is expected according to equation 
(4). Also, as a validation of the method the V1ω was variated from 0 to 5V at 1KHz (voltage scan 
measurement) to show the cubic dependency between V3ω and V1ω. In Fig.1b this dependency 
is shown by fitting the natural logarithm of both voltages resulting in a value of ~3.17.
The temperature coefficient of resistance for the stripe, α in (1), was obtained by increasing the 
temperature from 50K to 350K and fitting the resistance at different temperatures for a linear 
approximation of the value. Using two different devices a value of ~0.00224 K-1 at 300K was 
obtained as shown in Fig.1c. The validated 3ω method was then used to extract the thermal 
conductivity of GeSn layers with different thicknesses.

Figure 1. a) Real and imaginary parts of the V3ω as a function of frequency, b) The cubic dependency 
of the V3ω with the V1ω is shown by linearly fitting the logarithm of both values. c) Temperature 

coefficient (α) at different temperatures for two devices with different stripe geometries ( 2b x l )
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Fig.2 shows a thermal conductivity for different GeSn thicknesses. For thinner samples (40nm) 
the lower thermal conductivity value is associated with the increase of the phonon scattering at 
the Ge0.88Sn0.12 / Ge PDA interface and possibly due to very high compressive strain in the GeSn 
lattice. After a certain thickness, above the critical thickness for strain relaxation, the conductivity 
is almost constant. However, the defect density in the thin Ge PDA (350 nm) can contribute to 
increased scattering and lower the k. For this reason a very thick GeSn layer (700 nm) grown 
on high-quality 1500 nm Ge substrate was measured to confirm the results. Sets of devices for 
every sample were measured showing the same behavior. While the layers are not intentionally 
doped (~ p-type 1x1017cm-3) it allows us to neglect the electrons contribution to the thermal 
conductivity. The measured κ represents the GeSn lattice thermal conductivity. 

Figure 2. Thermal conductivity for different GeSn layer thicknesses for two generations of measurements.

Conclusions
The electrical 3ω-method was used to extract the κ of Ge0.88Sn0.12 alloys at different thicknesses. 
A constant behavior was shown for thicknesses above 100nm. The constant tendency spreads 
near a very low value of 4W/m-K, in agreement with previously published data [1] for the same 
Sn concentration. As outlook, samples with different Sn concentrations will be presented to 
confirm the decrease of the  with the Sn content.  New devices are being prepared to measure 
also the Seebeck coefficient. 
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Introduction
In thermoelectric materials the conversion between
thermal and electrical energy takes place. The
efficiency of this process is defined by the figure of
merit ZT which relates the thermal conductivity (κ),
electrical conductivity (σ), and Seebeck coefficient (S)
of the material for a specific temperature. To obtain a
high ZT, large S and σ are required as well as a low κ.
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Ge1-xSnx binary alloys are novel group IV
semiconductors fully compatible with Si-based
technology which are promising candidates for
thermoelectric applications at room temperature.

For this work, the thermal conductivity of thin GeSn
(~12% Sn) layers was measured by the electrical 3ω-
method to demonstrate that for such Sn
concentrations the κ significatively decreases
compared to that of pure Ge (~64 W/Km).
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For thinner samples (40nm), the low thermal
conductivity value is associated with the increase of
the phonon scattering at the GeSn/Ge(PDA) interface
and possibly due to very high compressive strain in the
GeSn lattice. After a certain thickness, above the
critical thickness for strain relaxation, the conductivity
is almost constant. However, the defect density in the
thin Ge(PDA) (350 nm) can also contribute to increase
the scattering and decrease the κ. For this reason, a
very thick GeSn layer (700 nm) grown on high-quality
1500 nm Ge substrate was measured to confirm the
results

The electrical 3ω-method was used to extract the κ of
GeSn (~12% Sn) alloys at different thicknesses. A
constant behavior was shown for thicknesses above
100nm. The constant tendency spreads near a very
low value of 4 W/Km, in agreement with previously
published data [1] for the same Sn concentration. As
outlook, samples with different Sn concentrations will
be presented to confirm the decrease of the κ with the
Sn content. New devices are being prepared to
measure also the Seebeck coefficient and electrical
conductivity.

Figure of merit
GeSn sample grown by CVD.

Si subs. + Ge buffer (PDA) + GeSn

S and κ device
σ device


