
Tecnología en Marcha
Vol. 38, No 1. Enero-Marzo, 2025 157

Effect of instance selection
algorithms on prediction error

of numerical variables
Efecto de los algoritmos de selección de instancias
sobre el error de predicción de variables numéricas

Martín Solís1, Erick Muñoz-Alvarado2

Fecha de recepción: 7 de diciembre, 2023
Fecha de aprobación: 14 de marzo, 2024

Solís, M; Muñoz-Alvarado, E. Effect of instance selection
algorithms on prediction error of numerical variables . Tec-

nología en Marcha. Vol. 38, No 1. Enero-Marzo, 2025. Pág.
157-171.

 https://doi.org/10.18845/tm.v38i1.6937

1	 Instituto Tecnológico de Costa Rica. Costa Rica
 marsolis@itcr.ac.cr
 https://orcid.org/0000-0003-4750-1198

2	 Instituto Tecnológico de Costa Rica. Costa Rica
 erickamacr3@gmail.com
 https://orcid.org/0000-0002-6244-3398

https://doi.org/10.18845/tm.v38i1.6937
mailto:marsolis@itcr.ac.cr
https://orcid.org/0000-0003-4750-1198
mailto:erickamacr3@gmail.com
https://orcid.org/0000-0002-6244-3398

Tecnología en Marcha
Vol. 38, No 1. Enero-Marzo, 2025158

Keywords
Instance selection algorithms; regression task; machine learning; noise.

Abstract
The main objective of this study is to analyze the effect of instance selection (IS) algorithms on
the prediction error in regression tasks with machine learning. Six algorithms were evaluated; four
from literature and two are new variants of one of them. Different percentages and magnitudes
of noise were added to the output variable of 52 datasets to evaluate the algorithms. The results
show that not all IS algorithms are effective. RegENN and its variants improve the prediction
error (RMSE) of the regression task in most datasets for high percentages and magnitudes of
noise. However, when the magnitude and percentage of noise are lower, for example, 10%-10%,
50%-10%, or 10%-30%, there is no evidence of improvement in most datasets. Other results are
presented to answer four new questions about the performance of the algorithms.

Palabras clave
Algoritmos de selección de instancias; tareas de regresión; aprendizaje automático; ruido.

Resumen
El objetivo principal de este estudio es analizar el efecto de los algoritmos de selección de
instancias (IS) sobre el error de predicción en tareas de regresión con machine learning. Se
evaluaron seis algoritmos; cuatro de la literatura y dos son nuevas variantes de uno de ellos. Se
agregaron diferentes porcentajes y magnitudes de ruido a la variable de salida de 52 conjuntos
de datos para evaluar los algoritmos. Los resultados muestran que no todos los algoritmos IS
son efectivos. RegENN y sus variantes mejoran el error de predicción (RMSE) de la tarea de
regresión en la mayoría de los conjuntos de datos para altos porcentajes y magnitudes de
ruido. Sin embargo, cuando la magnitud y el porcentaje de ruido son menores, por ejemplo, 10
%-10 %, 50 %-10 % o 10 %-30 %, no hay evidencia de mejora en la mayoría de los conjuntos
de datos. Se presentan otros resultados para responder a cuatro nuevas preguntas sobre el
rendimiento de los algoritmos.

Introduction
Instance selection (IS) is useful to choose a subset of data without noise or with more relevant
instances [1]. Two of the main purposes of instance selection are reducing a dataset and
improving performance in data mining or machine learning tasks by cleaning redundant
instances, outliers, and noise instances [2]. Our work analyzes how the application of instance
selection algorithms affects performance in regression tasks when there is noise in the training
dataset.
In supervised tasks, an instance is noisy when it has suffered a corruption that alters the
relationship between the informative features and the output [1]. When the noise is present in
the input attributes, it is known as attribute noise, and when it is present in the output variable is
known as class noise [3]. The last one is more harmful in supervised classification tasks [5], and
maybe, for this reason, several filters have been developed for its detection. These filters have
been effective for the classification task. For example, Garcia et al. [1] show the effect of three
noise filters to detect and delete instances in datasets with uniform class noise and pair-wise
class noise at ranges from 5 to 20%. SVM, Ripper, and C4.5’s mean accuracy was better when

Tecnología en Marcha
Vol. 38, No 1. Enero-Marzo, 2025 159

the filter was applied to delete noise instances from datasets. Also, in [5], it is shown how some
filter algorithms contribute to improve the classification performance in problems with different
percentages of class noise.
As well as these studies, many others have emerged that analyze the performance of noise
detection algorithms in classification problems, for example [6, 10,11,12, 18, 19]. However,
for regression problems, the development and performance evaluation of filter algorithms has
not been widely studied. Some of the most relevant studies come from [7, 8, 9].On the hand,
the findings for noise detection in classification supervision tasks cannot be generalized to
regression tasks. In classification, the instance selection algorithm looks for deviations at a class
between a finite number of classes; however, in regression, the output could be continuous or
with a broad range of values [7]. Therefore, in regression, the IS algorithm should set a variable
threshold of the difference between the predicted and the actual value of the vector output to
define an instance as noisy [9].
The main objective of this study is to analyze the effect of IS algorithms on the prediction error
in regression tasks. Arnaiz-González et al. [7, 17] analyzed the effect of a few IS algorithms
on performance prediction in the regression task, including different noise percentages in
29 datasets. However, in our study, we consider the percentage of noisy instances and the
magnitude of noise, while including more datasets, four algorithms taken from literature, and two
new variants of one of them. Precisely, we aim to answer the following new questions about IS
algorithms for regression:

1.	 Are the IS algorithms effective in improving the prediction error of the regression task at
different percentages of noisy instances and magnitudes of noise in the output variable?

2.	 Are the IS algorithms effective in improving the prediction error of the regression task when
there is no noise in the output variable?

3.	 Which of the IS algorithms is the best at reducing the prediction errors in the regression
task, considering different percentages of noisy instances and magnitudes of noise?

Related work
A few studies have proposed algorithms, for instance selection in regression tasks. These
algorithms can be used for noise detection in the output variable [8], but also in data reduction,
deleting redundant instances [8] or outlier detection [9].
According to [4], there are two kinds of Instance selection algorithms for regression: evolutionary-
based and nearest neighbor-based. In the first group, we found the genetic algorithm developed
by [16] to detect outliers in regression problems and the multi-objective evolutionary learning
of fuzzy rule-based systems proposed by [15]. In the second group, there are more options:
Kordos and Blahnik [9] adapted the Edited Nearest Neighbor rule (ENN) and Condensed
Nearest Neighbor rule (CNN) for instance selection in classification problems to regression
problems. They were called RegENN and RegCNN, respectively. Arnaiz-González et al. [4, 7,
17] proposed several variations using KNN, for example, 1) discretizes the output variable to
apply ENN and CNN, 2) Create a bagging ensemble with RegENN and RegCNN, 3) ensemble
of discretization-based ENN and ensemble of discretization-based CNN, 4) adaptations and
variants of DROP instance selection methods used in classification. Song et al. [8] developed a
KNN algorithm named DISKR that deletes noise or redundant instances to reduce the training
dataset.

Tecnología en Marcha
Vol. 38, No 1. Enero-Marzo, 2025160

In [22] the authors evaluate the performance of an evolutionary algorithm, for instance, selection
in regression. They evaluated different parameters of the algorithm and its influence on the
results. Also, [23] used a genetic algorithm, for instance, selection in regression. The authors
demonstrate that their proposal improves the predictive model performance compared to
instance selection performed on the complete training dataset. In order to attend to the problem
of instance selection for multi-target regression tasks [24], proposed an ensemble algorithm.
They showed the effectiveness of their proposal using 18 datasets. Finally, [25] developed an
interactive nonparametric evidential regression algorithm with instance selection.
From the previous algorithms, we evaluated RegENN because is considered a noise filter [17]
and shows the best RMSE when applied to datasets with 10% of noise [7]; DROP2-RE was
selected because shows good performance detecting 10%, 20% and 30% of noisy instances
in the datasets; DiscENN because when applied with 20%, 30%, and 40% of noise, the RMSE
was the best; DISKR, since it has not been tested in problems with noise as far as we know, and
shows good results reducing the dataset and keeping good performance in regression tasks [4,
8]. We propose two new options derived from RegENN, named RegENN2 and RegENN3. In the
next section, we will describe these algorithms.

Algorithms 3

RegENN was proposed by [9] as an adaptation of Wilson ENN (used for classification instance
selection). For each instance, 𝑥𝑥! : a) A model (kNN in our case) for regression is trained without
the instance; b) Get k-nearest neighbors of the instance 𝑥𝑥! based on T; c) Compute the
threshold θ that depends on the standard deviation of the k-nearest neighbors real values and a
parameter α; d) Exclude an instance from T if the prediction error of is bigger than the threshold
θ. The purpose of this model is to exclude an instance that has a prediction error α times greater
than the variability of the numerical target in similar instances. The algorithm gets more rigorous
at excluding instances when α decreases.

 Algorithm1: Edited Nearest Neighbor for regression (RegENN)
Data : Training set T = { (𝑥𝑥! ,	𝑦𝑦!) , . . . (𝑥𝑥! ,	𝑦𝑦!)} ,
𝑥𝑥! =features, 	𝑦𝑦! = numerical target, Model= any model for regression prediction, 𝑦𝑦" = prediction,
R = k -nearest neighbors, α=parameter, ѳ= threshold, S=Subset of T
 Result : Instance set S ⊆ T
1 for i = 1 . . . n do
2 𝑦𝑦"! = Model (T\𝑥𝑥!)
3 R = kNN (T\𝑥𝑥!)
4 ѳ= α.std(y(𝑥𝑥!))
5 If |𝑦𝑦! - 𝑦𝑦"! | > ѳ then
6 T = T\𝑥𝑥!
 end
 end
7 S=T
Return S

3	 The IS algorithms used are at ……

https://www.sciencedirect.com/topics/computer-science/predictive-model
https://www.sciencedirect.com/topics/computer-science/training-dataset

Tecnología en Marcha
Vol. 38, No 1. Enero-Marzo, 2025 161

We proposed two variations to RegENN. The first one was named RegENN2 and had two main
differences. One is that the instances considered noisy were removed simultaneously instead
of sequentially. We did this change to avoid the influence of the dataset order in the instance
selection process. The second and most important, is that we changed the formula of the
threshold ѳ. In RegENN2 ѳ is the product of the parameter α and the mean absolute error of
the k-nearest neighbors. The idea of this change is to exclude an instance that has an absolute
error prediction greater α times than the mean absolute error of its more similar instances. The
algorithm is more rigorous when α decreases.

 Algorithm2: RegENN2
 Data : Training set T = { (𝑥𝑥! ,	𝑦𝑦!) , . . . (𝑥𝑥! ,	𝑦𝑦!)} ,
𝑥𝑥! =features, 	𝑦𝑦! = numerical target, 𝑦𝑦" = prediction, R = k -nearest neighbors, α=parameter,
MAE (𝑥𝑥!) =Mean absolute error of k -nearest neighbors, ѳ= threshold, S=Subset of T
 Result : Instance set S ⊆ T

1 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅! =0
2 for i = 1 . . . n do
3 𝑦𝑦"! = kNN(T\𝑥𝑥!)
4 𝑅𝑅! = kNN (T\𝑥𝑥!)
5 ѳ= α .(MAE(𝑥𝑥!!))
6 If |𝑦𝑦! - 𝑦𝑦"! | > ѳ then

7 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅! =1
 end
 end

8 S ={ T: 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅! =0 }
 Return S

The second was named RegENN3. It assigns a weight to the features when the Euclidean
distance is computed in the kNN prediction. The weights are taken from Random Forest Feature
importance. This change pretends to reduce the importance of features that are less related to
the target. Furthermore, a weight is assigned to the neighbor instances when the mean absolute
error is computed. Closer instances of a specific instance have more weight. To that end, we
divide the inverse distance of each instance neighbor by the sum inverse distances from all
neighbors.

Tecnología en Marcha
Vol. 38, No 1. Enero-Marzo, 2025162

Algorithm3: RegENN3
 Data : Training set T = { (𝑥𝑥! ,	𝑦𝑦!) , . . . (𝑥𝑥! ,	𝑦𝑦!)} , 𝑥𝑥! =features, 	𝑦𝑦! = numerical target, imp=
feature weight vector given by F score of a Random Forest model with default parameters and
100 trees, 𝑦𝑦" = prediction, R = k -nearest neighbors, kNN_weight =kNN using feature weight
vector , distance =distance between neighbor and instance i, II= neighbors weight vector (it
shows which neighbor is closer to instance i), α=parameter, MAE_weight= weighted MAE by
II (it assigns more weight to the error of closer neighbors), ѳ= threshold, S=Subset of T
 Result : Instance set S ⊆ T

1 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅! =0
2 Imp= RandomForest(T\𝑥𝑥!)
3 for i = 1 . . . n do
4 𝑦𝑦"! = kNN_weight(T\𝑥𝑥! ,imp)
5 𝑅𝑅! = kNN_weight (T\𝑥𝑥! ,imp)
6 foreach k (instance neighbor) in 𝑅𝑅! do

7 	𝐼𝐼𝐼𝐼! = 	
𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑"#$

∑%"&$ 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑"#$

 end
8 ѳ= α .(MAE_weight\ 𝑅𝑅! ,	𝐼𝐼𝐼𝐼! = 	

𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑"#$

∑%"&$ 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑"#$
)

9 If |𝑦𝑦! - 𝑦𝑦"! | > ѳ then

10 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅! =1
 end
 end

11 S ={ T: 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅! =0 }
 Return S

DiscENN was also proposed by [7] and showed better performance than RegENN to improve
the regression prediction model when there is more than 10% noise [7]. A similar version was
used in this paper, but we established the number of discretization categories k as a parameter
instead of using leave-one-out entropy to be estimated. In this algorithm, the target value is
discretized with equal-width binning. After that ENN instance selection algorithm for classification
is applied, and the categorical target is restored to get the subset S finally.

Algorithm4: Discretization for Edited Nearest Neighbor
 Data : Training set T = { (𝑥𝑥! ,	𝑦𝑦!) , . . . (𝑥𝑥! ,	𝑦𝑦!)} ,
𝑥𝑥! =features, 	𝑦𝑦! = output variable, ENN= algorithm of instance selection for classification,
k=number of discretization categories, S=Subset of T
 Result : Instance set S ⊆ T
1 𝑦𝑦! =Apply discretization of 	𝑦𝑦! with equal-width binning of size k
2 Apply ENN on (x, 𝑦𝑦!) to get S
3 Restore the numerical value of 𝑦𝑦!
 Return S

Tecnología en Marcha
Vol. 38, No 1. Enero-Marzo, 2025 163

Song et al. [8] developed a kNN algorithm named DISKR that deletes noise or redundant
instances to speed up executing prediction and improve the learners’ performance in regression
tasks. They compare the performance of DISKR with other algorithms that had a similar
purpose, using 19 datasets. The results showed that the application of DISKR did not display
better or worse R² in regression tasks, when compared to other instance selection algorithms.
However, the DISKR lowers the storage ratio and therefore speeds up the execution time. This
algorithm has three parts: First, excluding outliers instances with a higher absolute prediction
error than the threshold (1 - ѳ) multiplied by the target. Second, ordering the included instances
by the absolute difference between target and prediction. Third, the objective is to remove the
instances that generate a higher residual sum of squares when excluded from the dataset.

 Algorithm 5: Decremental instance selection for kNN regression (DISKR)
 Data : Training set T = { (𝑥𝑥! ,	𝑦𝑦!) , . . . (𝑥𝑥! ,	𝑦𝑦!)} ,
𝑥𝑥! =features, 	𝑦𝑦! = output variable, 𝑦𝑦" = prediction, ѳ=parameter, 𝑦𝑦"! = prediction excluded I,
𝑅𝑅𝑅𝑅! = ∑ (𝑦𝑦" − 𝑦𝑦'")#"	%	&'!	 , 𝑅𝑅𝑅𝑅! = ∑ (𝑦𝑦&" − 𝑦𝑦&"#)$"	&	'(!	 , ʌ!={i ϵ 𝑁𝑁𝑁𝑁"	𝑗𝑗	𝜖𝜖	𝑇𝑇	 } , S=Subset of T ,
A = 𝜋𝜋𝑟𝑟!

 Result : Instance set S ⊆ T

1 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅! =0, S = ᴓ
2 for i = 1 . . . n do
3 𝑦𝑦"! = kNN (T\𝑥𝑥!)
4 if |𝑦𝑦! - 𝑦𝑦"! | > (1- ѳ) 𝑦𝑦! then

5 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅! =1
 end
 end

6 S ={ T: 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅! =0 }

7 	𝑆𝑆! = Sort S in decreasing order according to (𝑦𝑦! - 𝑦𝑦"!)
8 foreach instance i in 	𝑆𝑆! do
9 compute 𝑅𝑅𝑅𝑅! = ∑ (𝑦𝑦" − 𝑦𝑦'")#"	%	&'!	 , 𝑅𝑅𝑅𝑅! = ∑ (𝑦𝑦&" − 𝑦𝑦&"#)$"	&	'(!	

10 if 𝑅𝑅𝑅𝑅! = ∑ (𝑦𝑦" − 𝑦𝑦'")#"	%	&'!	 - 𝑅𝑅𝑅𝑅! = ∑ (𝑦𝑦&" − 𝑦𝑦&"#)$"	&	'(!	 <= ѳ 𝑅𝑅𝑅𝑅! = ∑ (𝑦𝑦" − 𝑦𝑦'")#"	%	&'!	 then
11 S= S-{i}
12 foreach j ϵ ʌ! do

13 Find another instance h to replace j in 𝑁𝑁𝑁𝑁!
14= ʌ! = ʌ! U {j}
 end
 end
 end
 Return S

Tecnología en Marcha
Vol. 38, No 1. Enero-Marzo, 2025164

DROP2-RE is an adaptation of Drop methods [20] used in classification problems. According
to [17], the idea is to remove an instance if it does not increase its associates prediction error.
The instances that have p as one of its k nearest neighbors are called associates of p. DROP2-
RE was between the two best algorithms considering the accuracy in the prediction task, when
there was a noise percentage of 10%, 20%, and 30%, according to experiments in [17].

 Algorithm 6: DROP2-RE: adaptation to regression of DROP2 by using error accumulation.
 Data : Training set T = { (𝑥𝑥! ,	𝑦𝑦!) , . . . (𝑥𝑥! ,	𝑦𝑦!)} ,
𝑥𝑥! =features, 	𝑦𝑦! = numerical target , S=Subset of T
 Result : Instance set S ⊆ T
 Let S =T
1 foreach instance x in S do
2 find x.𝑥𝑥. 𝑁𝑁!…..$%! the k+1 nearest neighbours of x in S
3 Add x to each of its list of the associates of the neighbours
4 foreach instance x in S do
5 Let ewith=0
6 Let ewithout=0
7 Foreach associate a of x do

8 Add |𝑦𝑦(𝑎𝑎) − 𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀(𝑎𝑎. 𝑁𝑁\𝑥𝑥, 𝑎𝑎)	| to ewithout

9 Add |𝑦𝑦(𝑎𝑎) − 𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀(𝑎𝑎. 𝑁𝑁, 𝑎𝑎)	| to ewith
10 if ewithout <= ewith then
11 Remove x from S
12 Foreach associate a of x do
13 Remove x from a list of nearest neighbours
14 Find a new nearest neighbour for a
15 Add a to its new neighbour’s list of associates
 Return S

Methods

Datasets
We used 52 datasets from the Keel repository [13] and UCI machine-learning repository [14].
The datasets used are in Repository. The number of instances of the datasets are between 209
and 5723, with an average of 2429. The number of input features is between 3 and 82. The
average correlation between the input features is between 0.03 and 0.86.

Instance selection algorithms and parameters
The algorithms explained in the previous sections could be used with different methods. For
example, in RegENN, the model (T\𝑥𝑥! ,𝑥𝑥!) could be calculated with KNN or another option.
However, we decided to use KNN because of its simplicity. KNN was applied with k=9 following
the recommendation of the authors [7].

Tecnología en Marcha
Vol. 38, No 1. Enero-Marzo, 2025 165

On the other hand, five of the six algorithms have one parameter that should be defined. We
evaluated each algorithm with four different parameter values considering what was used in
other studies [7, 8, 17]. The parameters used in the experiments are shown below:

•	 RegENN, RegENN2, RegENN3 were applied with alpha = 0.5, 1, 3, 5.
•	 DiscENN with bins = 2,3,4,5.
•	 DISKR with alpha = 0.05, 0.1, 0.2, 0.3
•	 DROPRE2 = It does not have a parameter

Experimental setup
We followed some principles of the method used by [7, 19] to evaluate the six algorithms’ effect
on the prediction error of the regression task. Figure 1 describes the experimental process
applied for each dataset.

4.	 First, we split the dataset in training and test (we used 5-fold cross-validation).
5.	 A magnitude of noise was added to the output variable of some instances of the training

set. For the noise incorporation, a percentage of instances were selected randomly. We
multiplied the value of the output variable by the magnitude of noise, and the result was
added or subtracted to the output variable.

6.	 Next, we applied the IS algorithm to the training set in order to detect the noisy instances.
Each instance classified as noisy was deleted from the training set.

7.	 Then, we trained a Random Forest Regressor with the training set to predict the output
variable. The Random Forest was trained with 100 trees, and a maximum depth of 9.
We chose the Random Forest because it is highly used in regression tasks with good
performance [26, 27], and has been successfully insensitive to over-fitting [28].

8.	 Finally, with the model trained, we predicted the output variable of the test dataset and
computed the Root Mean Square Error.

Figure 1.Experimental process, based on [7]

Tecnología en Marcha
Vol. 38, No 1. Enero-Marzo, 2025166

The process depicted in figure 1 was applied 13 times for each dataset. The first time is applied
using the original dataset without noise incorporations into the output variable in the step 2. In the
following twelve times, we used different magnitudes and percentages of noise. The magnitudes
of the noise used were: 10%, 50%, 100% and 200% while the percentages of noisy samples
were: 10%, 30% and 50%. Thus, in each of the twelve times, we applied a combination of the
percentage of noisy instances and the noise magnitude. In experimental terms, it is a factorial
design 4*3 for repeated measures. A random seed was fixed to guarantee the comparability.
The algorithms and the experimental setup were programmed in Python, and the data analysis
in R.

Results

Influence of IS algorithms on the prediction error of the regression task
In order to show pieces of evidence to questions one and two, we calculated the relative change
in the RMSE when using an IS algorithm versus not using it for each percentage and magnitude
of noise. Figure 2 shows the confidence interval of the proportions of cases (datasets) where
the relative change decreases when the IS algorithm was used at different percentages
(percentage) and magnitudes of noise. Figure 3 complements the information of figure 2 with a
box plot of the relative change.
According to the punctual percentage estimation and the box plots, the algorithms RegENN,
RegENN2 and RegENN3 tend to be more effective as the noise magnitude increases
independent of the noise percentage. Based on the interval confidence, we cannot conclude
that these algorithms are effective in most cases when there is no noise or when the magnitude
and percentage noise are: 10%-10%, 10%-30%. DiscENN is effective in most cases when noise
magnitude is 100% and 200% with a noise percentage of 10%, and DROPRE2 is effective when
the magnitude is 200% with noise percentages of 10% and 30%, although the percentage
decrease in RMSE tends to be modest in these cases for both algorithms (Figure 2).

Figure 2. Confidence intervals of the proportion of datasets where the RMSE decreases when the

Tecnología en Marcha
Vol. 38, No 1. Enero-Marzo, 2025 167

IS algorithm is applied vs not applied, according to magnitude and percentage of noise.

Figure 3. Box plot of the relative change in the RMSE when the IS algorithm is
applied vs. not applied, for each percentage and magnitude of the noise

Best algorithm
Table 1 presents evidence for question 3. This table has the average rank of each algorithm for
each combination of noise percentage and noise magnitude. For example, the first number in
RegENN shows that in the 52 datasets, this algorithm got an average position of 2.1 between the
six algorithms when the dataset has 0% of noise. The Anova test indicates that at least one mean
differs from the others in each scenario (a combination of percentage and magnitude of noise),
p<0.05. Because of the previous result, we applied paired t-test with Bonferroni correction
to analyze which means have a significant statistical difference with the best mean. This test
showed that RegENN, RegENN2, RegENN3 were the best algorithms in 11 scenarios, while in
the scenarios where the percentage of noise was 0.1, and the magnitudes were 1 and 2, the
best were RegENN2, RegENN3.
Although the algorithms DiscENN, DISKR, and DROP2-RE had the worst performance on
average, in some datasets, these got the best performance (table 2). For example, with a
percentage and magnitude of 10%, there were 17% (9 datasets) of datasets where DiscENN
gave the best reduction in RMSE.

Tecnología en Marcha
Vol. 38, No 1. Enero-Marzo, 2025168

Table 1. Average rank over the relative change in RMSE when IS is used (vs. not used), for each algorithm.

Percentage Magnitude
Algorithms

RegENN RegENN2 RegENN3 DiscENN DISKR DROP2-RE
0 0 2.1a 2.7a 2.6a 3.5 5.3 4.8

0.1 0.3 2.5a 2.4a 2.4a 3.5 5.4 4.8
0.1 0.5 2.3a 2.5a 2.1a 3.9 5.6 4.6
0.1 1 2.6 2.2a 2a 3.8 5.7 4.7
0.1 2 2.6 1.8a 2.1a 4.2 5.6 4.6
0.3 0.1 2.2a 2.5a 2.2a 3.8 5.5 4.8
0.3 0.5 2.1a 2.4a 2.2a 4.1 5.7 4.5
0.3 1 2.3a 2.3a 2.1a 4.1 5.7 4.6
0.3 2 2.2a 2.3a 1.9a 4.3 5.7 4.6
0.5 0.1 2.2a 2.4a 2.2a 3.9 5.3 5.0
0.5 0.5 1.9a 2.4a 2.4a 4.0 5.8 4.5
0.1 1 2.3a 2.3a 2.2a 3.9 5.8 4.6
0.5 2 1.9a 2.1a 2.2a 4.5 5.8 4.5

a best algorithms according to paired t-test with Bonferroni correction

Table 2. Relative distribution of the datasets according to the algorithm that got the
best relative change in RMSE by each percentage and magnitude of noise.

Percentage Magnitude
Algorithms

RegENN RegENN2 RegENN3 DiscENN DISKR DROP2-RE Total
0 0 40% 15% 29% 8% 4% 4% 100%

0.1

0.1 23% 31% 27% 17% 2% 0% 100%
0.5 29% 13% 40% 13% 4% 0% 100%
1 12% 31% 40% 12% 4% 2% 100%
2 10% 54% 23% 8% 4% 2% 100%

0.3

0.1 33% 21% 33% 8% 4% 2% 100%
0.5 37% 23% 29% 8% 4% 0% 100%
1 25% 23% 42% 6% 4% 0% 100%
2 31% 19% 44% 2% 2% 2% 100%

0.5

0.1 27% 29% 29% 8% 6% 2% 100%
0.5 42% 21% 21% 13% 0% 2% 100%
1 29% 29% 27% 12% 0% 4% 100%
2 46% 27% 21% 4% 2% 0% 100%

Tecnología en Marcha
Vol. 38, No 1. Enero-Marzo, 2025 169

Conclusions
This study provides new evidence about the influence of the IS algorithms on the prediction error
in learning regression tasks. The research questions posed in the introduction with our answers
based on the results are shown below.
1. Are the IS algorithms effective in improving the prediction error of the regression task at
different percentages of noisy instances and magnitudes of noise in the output variable?
Not all IS algorithms are effective. The RegENN and its variants tend to improve the prediction
error of the regression task in most datasets for high percentages and magnitudes of noise.
The RMSE reduction fluctuates between 0% and 100%. Nonetheless, when the magnitude and
percentage of noise are lower, for example, 10%-10%, 50%-10%, or 10%-30%, there is no
evidence of improvement in most datasets, and when it occurs, it is close to zero. Concerning
the other algorithms, these are not effective in over 50% of datasets for the majority percentages
and magnitudes of noise.
2. Are the IS algorithms effective in improving the prediction error of the regression task when
there is no noise in the output variable?
The IS algorithms are not effective in improving the prediction error of the regression task when
there is no noise in the output variable. The RegENN and its variants tend to be effective around
50% of datasets, and with other algorithms, this percentage is lower. Besides, when there is an
improvement in performance prediction, the percentage reduction in RMSE is close to 0%.
3. Which of the IS algorithms is the best at reducing the prediction errors in the regression task,
considering different percentages of noisy instances and magnitudes of noise?
RegENN, RegENN2, RegENN3 were the best algorithms in 11 scenarios (combination of
percentage and magnitude of noise), while in the scenarios where the percentage of noise
was 0.1, and the magnitudes were 1 and 2, the best were our proposals RegENN2, RegENN3.
Although the algorithms DiscENN, DISKR, and DROP2-RE had the worst on average, in some
datasets, these got the best performance. For this reason, it is convenient to develop a model
that can tell us which algorithm is the best option, according to the characteristics of the dataset.

Future Research lines
Future studies should analyze what dataset features influence the effectiveness of IS algorithms
to reduce the error in the regression task and develop a model that can tell us which algorithm
is the best option according to the characteristics of the dataset.
Our findings suggest that the IS algorithm is not effective when the noise percentage and
magnitude is lower, for example, 10% of noise with a magnitude of 10% and 50% of the real
value. Therefore, new algorithms should be proposed to reduce the error in the regression task
for low values of noise percentage and noise magnitude.

References
[1]	 S. García, J. Luengo, F. Herrera, Data preprocessing in data mining, Springer, 2015. doi:10.1007/978-3-319-

10247-4
[2]	 H.Liu, H.Motoda, On issues of instance selection, Data Min. Knowl. Disc. 6(2) (2002) 115–130
[3]	 S. García, J. Luengo, F. Herrera, Tutorial on practical tips of the most influential data preprocessing algorithms

in data mining, Knowledge-Based Systems, 98 (2016) 1-29 https://doi.org/10.1016/j.knosys.2015.12.006
[4]	 A. Arnaiz-González, M. Blachnik, M. Kordos, C. García-Osorio, Fusion of instance selection methods in regres-

sion tasks, Information Fusion 30 (2016) 69–79 https://doi.org/10.1016/j.inffus.2015.12.002

https://doi.org/10.1016/j.inffus.2015.12.002

Tecnología en Marcha
Vol. 38, No 1. Enero-Marzo, 2025170

[5]	 X. Zhu , X. Wu, Class noise vs. attribute noise: a quantitative study, Artif. Intell. Rev. 22 (2004) 177–210 https://
doi.org/10.1007/s10462-004-0751-8

[6]	 J.Sáez, M. Galar, M. Luengo, F. Herrera, INFFC: an iterative class noise filter based on the fusion of classifiers
with noise sensitivity control. Information Fusion 27 (2016) 19-32 https://doi.org/10.1016/j.inffus.2015.04.002

[7]	 A. Arnaiz-González, J. F. Díez-Pastor, J.J .Rodríguez, C. I. García-Osorio, Instance selection for regression by
discretization, Expert Systems with Applications 54 (2016) 340-350. https://doi.org/10.1016/j.eswa.2015.12.046

[8]	 Y.Song, J. Liang, J.Lu, X.Zhao, X, An efficient instance selection algorithm for k nearest neighbor regres-
sion, Neurocomputing, 251 (2017) 26-34 https://doi.org/10.1016/j.neucom.2017.04.018

 [9]	 M.Kordos, M. Blachnik, Instance selection with neural networks for regression problems, in: A.E.P. Villa,
W.Duch, P.Érdi, F.Masulli, G.Palm(Eds.),Artificial Neural Networks and Machine Learning ICANN 2012, volu-
me 7553 of Lecture Notes in Computer Science, Springer Berlin Heidelberg, 2012, pp. 263–270 https://doi.
org/10.1007/978-3-642-33266-1_33

[10]	 L. Daza, E. Acuna, An algorithm for detecting noise on supervised classification, in: Proceedings of the 1st
World Conference on Engineering and Computer Science (WCECS), October 2007, San Francisco, USA, pp.
701–706.

[11]	 F. Benoît, M.Verleysen, Classification in the presence of label noise: a survey.” IEEE transactions on neural
networks and learning systems 25(5) (2013) 845-869 https://doi.org/10.1109/tnnls.2013.2292894

[12]	 B.Zerhari, A. Lahcen, S. Mouline. Detection and elimination of class noise in large datasets using partitioning
filter technique. in 2016 4th IEEE International Colloquium on Information Science and Technology (CiSt), 2016
https://doi.org/10.1109/cist.2016.7805041

[13]	 J. Alcalá-Fdez, A. Fernández, J. Luengo, J. Derrac, J, S. García, Keel data- mining software tool: Data set
repository, integration of algorithms and experimental analysis framework, Multiple-Valued Logic and Soft
Computing, 17 (2011) 255–287.

[14]	 D, Dua, C. Graff, UCI Machine Learning Repository [http://archive.ics.uci.edu/ml]. Irvine, CA: University of
California, School of Information and Computer Science, 2019

[15]	 M. Antonelli, P. Ducange, F. Marcelloni, Genetic training instance selection in multi objective evolutionary fuzzy
systems: A coevolutionary approach, IEEE Transactions on Fuzzy Systems 20 (2) (2012) 276–290 https://doi.
org/10.1109/tfuzz.2011.2173582

[16]	 J. Tolvi, Genetic algorithms for outlier detection and variable selection in linear regression models, Soft
Computing 8 (8) (2004) 527–533 https://doi.org/10.1007/s00500-003-0310-2

 [17]	 A. Arnaiz-González, J.F.Díez-Pastor, J.J. Rodríguez, C.García-Osorio, Instance selection for regression:
Adapting DROP, Neurocomputing, 201 (2016) 66-81 https://doi.org/10.1016/j.neucom.2016.04.003

[18]	 X. Zhu Wu, X, Class noise vs attribute noise: a quantitative study, Artif.Intell.Rev, 22 (3) (2004) 177–210 https://
doi.org/10.1007/s10462-004-0751-8

[19]	 A. Guillen, L. J. Herrera, G. Rubio, H. Pomares, A. Lendasse, I. Rojas, New method for instance or prototype
selection using mutual information in time series prediction, Neurocomputing 73 (10) (2010) 2030–2038 https://
doi.org/10.1016/j.neucom.2009.11.031

[20]	 D.R. Wilson, T.R Martinez, Instance Pruning Techniques, ICML’97, 1997, pp. 403-411.
[21]	 T. Snijders, R. Bosker, Multilevel analysis: an introduction to basic and advanced multilevel modeling, Sage,

1999.
[22]	 M. Kordos, K. Łapa, Multi-Objective Evolutionary Instance Selection for Regression Tasks, Entropy, 20(10)

(2018) 1-34 https://doi.org/10.3390/e20100746 
[23]	 M. Kordos, M. Blachnik, R. Scherer, Fuzzy Clustering Decomposition of Genetic Algorithm-based Instance

Selection for Regression Problems, Information Sciences, 587 (2021) 23-40 https://doi.org/10.1016/j.
ins.2021.12.016

[24]	 C. Gong, P. Wang, Z. Su, An interactive nonparametric evidential regression algorithm with instance selection,
Soft Computing, 24(5) (2020), 3125–3140 https://doi.org/10.1007/s00500-020-04667-4 

[25]	 O. Reyes, H. M. Fardoun, S. Ventura, An ensemble-based method for the selection of instances in the multi-
target regression problem, Integrated Computer-Aided Engineering, 25(4) (2018) 305–https://doi.org/10.3233/
ica-180581 

[26]	 M. Belgiu and L. Drăguţ, Random forest in remote sensing: A review of applications and future directions,
ISPRS Journal of Photogrammetry and Remote Sensing, 114, (2016) 24–31 https://doi.org/10.1016/j.isprsj-
prs.2016.01.011

https://doi.org/10.1007/s10462-004-0751-8
https://doi.org/10.1007/s10462-004-0751-8
https://doi.org/10.1016/j.inffus.2015.04.002
https://doi.org/10.1016/j.eswa.2015.12.046
https://doi.org/10.1016/j.neucom.2017.04.018
https://doi.org/10.1007/978-3-642-33266-1_33
https://doi.org/10.1007/978-3-642-33266-1_33
https://doi.org/10.1109/tnnls.2013.2292894
https://doi.org/10.1109/cist.2016.7805041
https://doi.org/10.1007/s00500-003-0310-2
https://doi.org/10.1016/j.neucom.2016.04.003
https://doi.org/10.1007/s10462-004-0751-8
https://doi.org/10.1007/s10462-004-0751-8
https://doi.org/10.1007/s10462-004-0751-8
https://doi.org/10.1016/j.neucom.2009.11.031
https://doi.org/10.1016/j.neucom.2009.11.031
https://doi.org/10.3390/e20100746
https://doi.org/10.1016/j.ins.2021.12.016
https://doi.org/10.1016/j.ins.2021.12.016
https://doi.org/10.1007/s00500-020-04667-4
https://doi.org/10.3233/ica-180581
https://doi.org/10.3233/ica-180581
https://doi.org/10.1016/j.isprsjprs.2016.01.011
https://doi.org/10.1016/j.isprsjprs.2016.01.011

Tecnología en Marcha
Vol. 38, No 1. Enero-Marzo, 2025 171

[27]	 M. Kayri, I. Kayri, and M. T. Gencoglu, The performance comparison of Multiple Linear Regression, Random
Forest and Artificial Neural Network by using photovoltaic and atmospheric data, 2017 14th International
Conference on Engineering of Modern Electric Systems (EMES), Jun. 2017. DOI: 10.1109/EMES.2017.7980368

[28]	 M. Čeh, M. Kilibarda, A. Lisec, and B. Bajat, Estimating the Performance of Random Forest versus Multiple
Regression for Predicting Prices of the Apartments, ISPRS International Journal of Geo-Information, 7, (2018),
1-16 doi:10.3390/ijgi7050168

Declaración sobre uso de Inteligencia Artificial (IA)
Los autores aquí firmantes declaramos que no se utilizó ninguna herramienta de IA para la
conceptualización, traducción o redacción de este artículo.

https://doi.org/10.1109/EMES.2017.7980368

	_heading=h.gjdgxs

