Emerging 2D materials for tunneling field effect transistors

Materiales 2D emergentes para transistores de efecto de campo de efecto túnel

Nupur Navlakha¹, Leonard F. Register², Sanjay K. Banerjee³

https://doi.org/10.18845/tm.v36i6.6768

¹ Microelectronics Research Center, Electrical and Computer Engineering, The University of Texas at Austin, Austin, TX-78758, United States. Email: nupurnavlakha@utexas.edu

² Microelectronics Research Center, Electrical and Computer Engineering, The University of Texas at Austin, Austin, TX-78758, United States. Email: register@austin.utexas.edu

³ Microelectronics Research Center, Electrical and Computer Engineering, The University of Texas at Austin, Austin, TX-78758, United States. Email: banerjee@ece.utexas.edu
Keywords
Tunnel field effect transistor; transitional metal dichalcogenides; type-III band alignment; heterostructure; black phosphorus; group IV Monochalcogenides.

Abstract
This work focuses on understanding the electronic properties of materials to enhance the performance of Tunnel Field Effect Transistor (TFET) through Density Functional Theory (DFT) simulations. Material selection prefers a p-type material with in-plane high density of state (DOS) (and low out-of-plane effective mass, m^*, where defined for many layer systems), and high valence band maxima (VBM) energy stacked with an n-type material with low conduction band minimum (CBM) energy (large electron affinity (EA)) that creates a broken or nearly broken band alignment and has low lattice mismatch. SnSe$_2$ is well-suited for an n-type 2D material due to high EA, while WSe$_2$. Black phosphorous (BP) and SnSe are explored for p-type materials. Bilayers consisting of monolayers of WSe$_2$ and SnSe$_2$ show a staggered but nearly broken band alignment (gap of 24 meV) and a high valence band DOS for WSe$_2$. BP-SnSe$_2$ shows a broken band alignment and benefits from a low lattice mismatch. SnSe-SnSe$_2$ shows the highest chemical stability, an optimal performance in terms of DOS of SnSe, tunability with an external field, and high VBM that also leads to a broken band alignment.

Introduction
2D-materials based Tunnel Field Effect Transistors (TFET) facilitate high interlayer tunneling on-currents (I_{on}) and gate controllability for short lateral channel lengths [1-6]. Although, graphene, transitional metal dichalcogenides (TMD), and their lateral and vertical heterostructures [2] have been investigated widely for TFETS [1,3,4], optimization to improve device design, reduce the off-current (I_{off}), improve I_{on} and sub-threshold swing (SS) and off current (I_{off}) is still needed.
Recently, WSe$_2$-SnSe$_2$ has shown promising results for vertical TFETs [5]. Moreover, WSe$_2$ shows ambipolar characteristics and can be replaced with a p-type material [1,3]. Use of a vertical hetero-bilayer that forms a broken or near broken band gap and requires less strain to form a lattice matched supercell is advantageous [3,4]. Here we explore other heterostructures for possible TFET application through Density Functional Theory (DFT) and compare results with those for WSe$_2$-SnSe$_2$. Results suggest that BP [7] and SnSe [8] can substitute for the p-type material in TFETs and is benefited with a higher strain tolerance, as well offer potential optoelectronics applications.

Computational method

Our calculations are performed using DFT with the projector-augmented wave method as implemented using the Vienna Ab initio Simulation Package [9]. The exchange-correlation interaction is included using the generalized gradient approximation developed by Perdew-Burke-Ernzerhof [10]. The lattice parameters of monolayers are optimized, and the calculated band gaps are consistent with previous literature [2,7,8,11]. The van der Waals (vdW) interactions are modeled using the OptB88 method [12]. The structures were fully relaxed with a force tolerance of 0.01 eV/Å. The energy cutoff was 400 eV, and the break criterion for the electronic self-consistent loop was 10^{-5} eV.

![Figure 1](image.png)

Results and discussion

Enhancing I_{on} requires a high Density of States (DOS) 2D material with high Valence Band Maxima (VBM) as the p-type material and an n-type material with a low Conduction Band Minima (CBM) or large Electron Affinity (EA) [3]. SnSe$_2$ shows high EA, while BP, WSe$_2$ and SnSe show a high VBM energy. We compare heterostructures of WSe$_2$-SnSe$_2$, BP-SnSe$_2$, and SnSe-SnSe$_2$. The binding energy per unit area (E_b) between the layers is calculated as $E_b = (E_{A/SnSe_2} - E_A - E_{SnSe_2})$ divided by the simulated heterostructure area, where $E_{A/SnSe_2}$, E_A, and E_{SnSe_2} are the total energy of the heterostructure, material A (WSe$_2$, BP, or SnSe), and SnSe$_2$, respectively, and Area is $a \cdot b$, as defined in Fig. 1. The interlayer separation, d, is calculated as that which maximizes the magnitude of the (intrinsically negative) interlayer binding energy E_b, both provided Fig. 1. And the greater the magnitude of E_b, the more stable the structure. SnSe-SnSe$_2$ is the most stable followed in order by BP-SnSe$_2$ and WSe$_2$-SnSe$_2$. The lattice mismatch is the least for BP-SnSe$_2$ (1.6% in y-direction, zigzag and 0.3% in x, armchair).
and most for SnSe-SnSe₂ (-1% for SnSe₂, 2.9% in the y-direction of SnSe) (Fig. 1). Mismatch can result in disorder, which is difficult to control during fabrication and can impact the interlayer coupling [5]. However, the maximum strain in each layer is less than 3%.

Figure 2. (a-c) The crystal structure in the y-z plane, (d-f) projected band structure, and (g-i) total projected density of state (DOS) of each material for WSe₂-SnSe₂, BP-SnSe₂, and SnSe-SnSe₂ in sequence. In (d-f), SnSe₂, WSe₂, BP, and SnSe atoms are represented in blue, cream, purple, green, respectively. All energies are referenced to vacuum level.

We stacked a 5x5, a √3x6, and a 2√3x6 supercell of SnSe₂ with a 6x6 supercell of WSe₂, a 2x5 supercell of BP, and a 3x5 supercell of SnSe, respectively. (Fig. 2(a)-(c), respectively), resulting in supercells with dimensions shown in Fig. 1. The Bader charge analysis was used to obtain the electron redistribution from WSe₂, BP, and SnSe, which are 7.0 x 10¹² cm⁻², 1.5 x 10¹³ cm⁻² and 2.3 x 10¹³ cm⁻², respectively (Fig. 1). This charge transfer between the layers results in electrostatic interlayer coupling, which contributes to the aforementioned interlayer binding energy. Fig. 2 (d)-(f) shows that the CBM of each heterostructure originates from SnSe₂ and the VBM from material A. Fig. 2(d) shows the resulting Type II alignment for WSe₂-SnSe₂ with heterostructure band gap \(E_g = 24 \) meV, which can be tuned to a Type III alignment with a small potential. A Type III alignment is found for BP-SnSe₂ and SnSe-SnSe₂ with an overlap of the conduction and valence bands of 21 meV (Fig. 2(e)) and 31 meV (Fig. 2(f)), respectively. Fig. 2(g)-(i) shows the total atom-projected DOS for each material. The valence band DOS near the band-edge is highest for WSe₂-SnSe₂, still comparable for SnSe-SnSe₂, while that for BP-SnSe₂ is substantially smaller.
Figure 3. (a) The variation in the band structure associated with the CBM and VBM for SnSe-SnSe₂ with Electric field, \(E (0.1 \text{ V/Å}, 0.0 \text{ V/Å}, 0.1 \text{ V/Å}) \). All energies in (a) are referenced to DFT supplied fermi level. (b) Variation in band gap \(E_g \) with applied external electric field \(E (-0.05 \text{ V/Å}) \) adjusted for the interlayer separation \(d \) and electron charge magnitude \(e \), \(\left| \partial E_g / \partial (deE) \right| \) and the change in electron distribution (\(\Delta q \)) in Material A (opposite that in SnSe₂) due to an applied external electric field of \(E \) of -0.05 V/Å. Note that in the absence of field screening within the bilayer, \(\left| \partial E_g / \partial (deE) \right| \) would be approximately unity.

Minimizing the sub-threshold swing requires maximizing gate efficiency, which can be quantified as change in the band overlap with applied voltage [13], where a higher change in \(E_g \) with a lower bias is desirable. The impact of external field on the band alignment can be observed in Fig. 3(a), where a positive field is directed from Material A to SnSe₂. For a 0.1 V/Å, SnSe-SnSe₂ shows a Type-II band alignment with a direct band gap. We compared the change in band gap with a field of -0.05 V/Å, which is equivalent to an interlayer potential difference of ~0.17 V between the layers for each heterostructure. Fig. 3(b) shows the variation is maximum for WSe₂-SnSe₂, followed by BP-SnSe₂, and SnSe-SnSe₂. The change in the charge distribution with applied external field is the largest for BP-SnSe₂. This result shows a possibility for better current control for this heterostructure as compared to the others. The material requirements and the results obtained here suggest SnSe-SnSe₂ could be utilized as a channel material for TFETs. Other Group-IV monochalcogenides [8] also could be explored as the \(p \)-type material for TFETs.

Conclusion

The work emphasizes on the need to replace the devices with new material system. The objective is to explore SnSe₂ heterostructures that can operate as tunneling transistors. Comparing WSe₂-SnSe₂, BP-SnSe₂, and SnSe-SnSe₂ shows that SnSe-SnSe₂ provides optimal performance in terms of stable structure, high DOS, tunability with electric field, and a broken band alignment that nominates it for being investigated at device level.

Acknowledgment

We thank National Nanotechnology Coordinated Infrastructure (NNCI), which is supported by the National Science Foundation under the Grant ECCS-2025227. We also acknowledge the Texas Advanced Computing Center (TACC) at The University of Texas at Austin for providing high performance computing resources for this work.

References

Emerging 2D Materials for Tunneling Field Effect Transistors

Nupur Navlakha*, Leonard F. Register, and Sanjay K. Banerjee
Microelectronics Research Center, Electrical and Computer Engineering,
The University of Texas at Austin, Austin, TX-78758, United States
nupurnavlakha@utexas.edu, register@austin.utexas.edu, and banerjee@ece.utexas.edu

Introduction
2D material based heterostructure as Vertical Tunnel Field Effect Transistor (TFET), FIG. 1:
- High interlayer tunneling on-currents (I_{on}) and gate controllability
- Non-dangling bond reduces the performance degradation occurring due to traps in lateral heterojunction based TFETs
- Need new material systems for enhanced performance

Material requirement/select for enhanced performance:
- Bilayer with a near broken or broken band gap
- Requires less strain to form a lattice matched supercell
- High Density of States (DOS) 2D material with high Valence Band Maxima (VBM) energy as the p-type material
- n-type material with a low Conduction Band Minima (CBM) energy or large Electron Affinity (EA)

Materials and Methods
- Density Functional Theory (DFT) calculations performed using Vienna Ab initio Simulation Package (VASP)
- Projector-augmented wave (PAW), Exchange-correlation interaction - Generalized Gradient Approximation (GGA) developed by Perdew-Burke-Ernzerhof (PBE)
- van der Waals interactions - OptB88 functional method

Results and Discussion
- Higher charge transfer between layers \rightarrow better interlayer coupling: SnSe-SnSe$_2$ > BP-SnSe$_2$ > WSe$_2$ -SnSe$_2$
- Non-dangling bond reduces the performance degradation occurring due to traps in lateral heterojunction based TFETs
- Need new material systems for enhanced performance

Conclusions / Next Steps
- Properties of bilayer material system with nearly broken or broken band gap are compared for TFET operation where, WSe$_2$ -SnSe$_2$ is beneficial due to high DOS and tunes into a broken band gap with a small external field
- BP-SnSe$_2$ has low lattice mismatch
- SnSe-SnSe$_2$ shows potential to investigate at device level

Other Group IV Monochalcogenides can be explored as p-type material in TFET device.