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Abstract
Climate observations are the groundwork for several real-world applications such as weather 
forecasting, climate change monitoring and environmental impact assessments. However, the 
data is mostly measured and recorded by external devices exposed to numerous variables, 
causatives of malfunctions and, therefore, missing values. Nowadays, data imputation in the 
time series field has been researched in depth and a wide variety of methods have been 
proposed, where traditional classification and regression algorithms predominate, even though 
there are also deep learning approaches that manage to capture temporal relationships 
between observations. In this article, a comparative analysis between a classification imputation 
algorithm, a regression imputation algorithm, and a deep learning imputation model is made: 
MissForest algorithm, based on random trees; Expectation Maximization with Bootstrap (EMB), 
the maximum likelihood estimation algorithm; and a proposed deep learning model, based on 
the Long-Short Term Memory (LSTM) architecture. Data from the Costa Rica meteorological field 
were used, which consist of multivariate data coming from several weather stations in the same 
geographical area.
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Resumen
Las observaciones climáticas son la base para varias aplicaciones del mundo real, como 
el pronóstico del tiempo, el monitoreo del cambio climático y las evaluaciones de impacto 
ambiental. Sin embargo, la mayoría de los datos son medidos y registrados por dispositivos 
externos expuestos a numerosas variables, causantes de mal funcionamiento de los dispositivos 
y, por lo tanto, de los valores faltantes. En la actualidad, se ha investigado en profundidad la 
imputación de datos en el campo de las series temporales y se han propuesto una gran variedad 
de métodos, donde predominan los algoritmos tradicionales de clasificación y regresión, no 
obstante, también existen enfoques de aprendizaje profundo que logran capturar relaciones 
temporales entre observaciones. En este artículo se realiza un análisis comparativo entre un 
algoritmo de clasificación, un algoritmo de regresión y un modelo de aprendizaje profundo: 
algoritmo MissForest, basado en árboles aleatorios; Expectation Maximization with Bootstrap 
(EMB), el algoritmo de estimación de máxima verosimilitud; y una propuesta de un modelo de 
aprendizaje profundo, basado en la arquitectura Long-Short Term Memory (LSTM). Se utilizaron 
datos del campo meteorológico de Costa Rica, los cuales consisten en datos multivariados 
provenientes de varias estaciones meteorológicas en una misma zona geográfica.

Introduction
In the field of time series, missing data is a common problem and, at the same time, it’s difficult 
to solve. Missing data can be a result of multiple reasons: noisy data, chaotic signals, network 
communication failures, sensor maintenance problems, damage to observation equipment, etc.
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Among the options researchers have used to solve the missing data problem are data 
interpolation and data imputation. Both solutions seek to fill in or “guess” those missing data 
using the available information. By using statistical methods for imputation, good estimates can 
be obtained from uncollected data when the time series have a small number of gaps. However, 
it’s difficult to predict consecutive data in time series [1].
Filling in missing data in time series usually involves some assumptions, but data should be 
imputed as precisely as possible to avoid data distortions that can lead to flawed or undesirable 
results, including inaccurate predictions depending on the use cases or problems in the decision-
making process for policy formulation [2]. Most of the best performing standard algorithms for 
data imputation rely on correlations between attributes to estimate missing data values.
Since the mid-1980s, sophisticated imputation methods have been introduced, including 
expectation maximization (EM), weight estimation methods, K-Nearest Neighbors, multiple 
imputation, and Bayesian imputation.
The current research focuses on the Expectation Maximization with Bootstrap (EMB) and 
MissForest (Random Forests for missing data) algorithms, and a proposed LSTM neural network. 
An evaluation and comparison of the aforementioned imputation methods is carried out in 
regards to their performance in the multiple and multivariate imputation of time series, with data 
from the Costa Rican climatology area.
One of the advantages of using machine learning is that they are usually more flexible than 
standard statistical models, as they can capture high-order interactions between data, resulting 
in better predictions. Deep learning methods hold great promise for time series forecasting, 
namely machine learning of time dependency and automatic handling of time structures such 
as trends and seasonality [3].
To successfully execute a comparative analysis and performance evaluation, we used the metrics 
Mean Absolute Error (MAE), Root Mean Square Error (RMSE), Coefficient of determination (R2) 
and execution time (time the algorithm or model takes to complete the data imputation process). 
For the execution time of the model, training time is not considered.
In this paper, we will refer to season or weather station as a specific area or zone that has been 
used to obtain, measure and process data from the different meteorological phenomena that 
occur in the atmosphere. This research proposes the use of multiple (several geographical 
seasons with similar climatology) and multivariable (several variables) data for the prediction of 
missing data.

Related work
It is of interest, for this research, to evaluate time series imputation in multiple and multivariable 
data using the algorithms: Expectation Maximization with Bootstrap (EMB), MissForest (a type of 
Random Forest) and a deep learning model based on Long Short-Term Memory (LSTM).
In the article by Jerez et al. [4], it is concluded that the use of machine learning techniques is the 
best approach when it comes to imputing data and obtaining significant improvements in terms 
of accuracy prediction. In the article by Liu et al. [5], results show that multiple data imputation 
methods outperform other approaches in handling missing data. In the article by Quinteros et al. 
[6], it’s determined that multiple data imputation can be successful in reconstructing a dataset 
with better performance when covariates from other seasons are included.
To expand on the EMB algorithm, the following results presented by Chen et al. [7] were used. 
Here, EMB was used to solve the problems of scarcity of rain registered in the available time 
series and it was compared against the DA (Data Augmentation) algorithm. With the increase 
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in the scarcity rate from 0% to 60%, in general, the variance in the EMB algorithm was not less 
than 86.00 and it fitted the observed value better than the DA algorithm. Therefore, the dataset 
interpolated by the EMB algorithm was much better than the one interpolated by the DA algorithm 
since it was closer to the observed value [7]. Also, the EMB imputation method can be applied 
to the imputation of missing data during periods of high flow, periods of normal flow, or periods 
of low flow. This fact should be considered an important advantage of the EMB algorithm [7].
The other algorithm of interest is Random Forest, used in [2, 8]. [2] show that, in general, Random 
Forests performed adequately and slightly better compared to linear interpolation and ARIMA. 
RMSE is used as a metric to assess the effectiveness of data imputation. It is worth mentioning 
that in this research the main analysis does not focus on the behavior of the Random Forest 
algorithm. Different algorithms were compared regarding missing gaps in water flow patterns, 
Random Forest shows an acceptable behavior (close to the average). 
In the research carried out by Cao in [9], most RNN-based methods, except GRU-D, demonstrate 
significantly better performance on imputation tasks than non-RNN (Non-Recurrent Neural 
Networks) algorithms. It is emphasized that GRU-D does not impute the missing values explicitly. 
M-RNN uses an explicit imputation procedure and achieves remarkable imputation results. 
The BRITS (Bidirectional Recurrent Imputation for Time Series) model significantly outperforms 
all reference models. The results of the experiments indicate that BRITS demonstrates more 
accurate results for both imputation and classification/regression than state-of-the-art methods. 
It is important to clarify that the recurrent layer in the BRITS architecture is based on LSTM as 
RNN [9].

Experimental design

Data statement
Data not available. For this research, climatological data captured by ICAFE (Instituto del Café 
de Costa Rica), a non-state public entity, is used, strictly, to evaluate the process of planting and 
harvesting coffee by said institution.
In this section, it is furtherly described the data available for this research. In summary, we used 
data on weather stations belonging to the same geographical area. Each weather station has 
the variables: precipitation, maximum temperature, outdoor temperature, dew point and outdoor 
humidity. The amount of data available ranges from December 1st, 2013 to April 30th, 2015, 
giving a total of 12,382 observations (recorded per hour) for each weather station.

Evaluation metrics
The response variables correspond to the metrics that will be used as a comparative value 
between the algorithms and the model. MAE (Mean Absolute Error), RMSE (Root Mean Squared 
Error), R2 (Coefficient of determination) and execution time (time taken by the algorithm to 
perform the imputation of data).

Dataset
The dataset used in this research was provided by the Costa Rican Coffee Institute (ICAFE), 
which has a series of sensors in different areas around the country where multiple variables of 
the Costa Rican weather are monitored. However, for various reasons, data has not always been 
able to be collected effectively.
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ICAFE datasets are made up of 32 weather stations or seasons, where each weather station 
has multiple variables. For the purposes of this study, the variables are technically delimited 
to outdoor temperature (in Celsius), maximum temperature (in Celsius), outdoor humidity 
(percentage of relative humidity), dew point (in Celsius) and precipitation (in cubic millimeters).
It is important to clarify that each station has 2 sensors, one outdoors and the other located in 
a warehouse, so indoor and outdoor humidity may not be correlated due to factors such as air 
conditioning or fans in the warehouse.
Four datasets were used in this research (seasons 9, 10, 11 & 12), coming from weather stations 
located in the Los Santos area, so all of them have very similar characteristics to each other 
(regarding their geographic location and climatic characteristics). 
Figure 1 shows the data analysis carried out at the 32 stations provided by ICAFE, the columns 
represent the year, the rows the weather station number and the blank spaces represent missing 
days in the time series. When the blank space between the data is small, it can be assessed 
whether what is missing are hours or days that could be filled in in order to achieve a more 
complete time series (under criteria explained later). When the blank space is greater than 2 
pixels, according to the graph, it can be understood that more than 2 consecutive days of data 
are missing.
The weather stations are grouped according to the geographical area they belong to 
(geographical zones are distinguished from each other by different colors). Some of the cells in 
white can be worked on (filled in), assuming that these are days or hours that don’t usually show 
very variant weather behaviors and that the edges (previous and after hours) that surround the 
missing gap in the data exhibit that the weather has not changed significantly during that time. 
The idea of filling in this data is to convert the blanks to the respective color of the zone, in order 
to produce a more robust dataset to use in training.

Figure 1. Analysis of the 32 ICAFE weather stations.
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Factor selection
All possible factors that influenced the experiments are listed below.

•	 Datasets: Real data provided by ICAFE was used, data on weather stations belonging 
to the same geographical area identified by the numbers 9, 10, 11 and 12. Each season 
has the variables: precipitation, maximum temperature, outdoor temperature, dew point 
and outdoor humidity. These variables were chosen because they share some correlation 
between them. The amount of data available for each weather station ranges from 
December 1st, 2013 to April 30th, 2015, giving a total of 12,382 observations (recorded 
per hour).

•	 Train, validation and test sets: The data was divided into 80% for training, 10% for validation 
and 10% for testing.

•	 Missing data: Time series datasets with missing data at 1%, 3%, 5%, 10% and 20% rates 
were generated from the original datasets previously mentioned. This means, for each 
original dataset (each weather station), another five datasets were generated, each one 
with a different missing data rate.

Selection of the experimental design
The proposed machine learning model was trained, validated and tested with season 9 and 
it predicted data for seasons 10, 11 and 12, resulting in 15 experiments. It was compared to 
another 30 new experiments from the EMB and MissForest results, resulting in a total of 45 
experiments in this section.

Development environment
Next, the necessary tools and requirements for the preprocessing, implementation, execution 
and validation of the experiments are detailed.

•	 Python programming language: Use of the keras library, missForest library and other 
libraries: pandas, numpy, random, math, statsmodels, scipy, sklearn, matplotlib, ipython, 
wandb, tensorflow, kerastuner, keras, math, seaborn.

•	 R programming language: Use of the Amelia library and Rcpp.
•	 Operating system and minimum hardware: The tests were executed in Google Colab 

(Jupyter Notebooks), therefore, the technical specifications of the machine used are, 
Windows HP Pavilion with an Intel Core i3, 8GB RAM of 2.0 GHZ processor.

Data preprocessing
With the purpose of preprocessing the dataset, many factors had to be analyzed in order to 
obtain a dataset with similar characteristics between the seasons and their periodicity. The 
preprocessing process involves carrying out a series of transformations to the content of each 
weather station in order to reduce the noise present in the time series data and thus make the 
dataset as uniform as possible.

•	 From the 32 stations, new weather stations with the 5 variables of interest were generated: 
outdoor temperature (Temp Out), maximum temperature (Hi Temp), outdoor humidity (Out 
Hum), dew point (Dew Pt.) and precipitation (Rain).

•	 For each of the new weather stations, we proceeded to generate stations only with 
observations every 60 minutes, since it works as an adequate combination in quantity of 
data and periodicity according to the stations available in the study.
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•	 The presence of the data in the 32 stations is analyzed. Two or more stations from the same 
geographical area are required and they must share the same time interval of data. This, in 
order to choose weather stations with similar characteristics (in their geographical location) 
and that contain an insignificant number of missing values (preferably cells with very small 
blank spaces), since the data group to be used must be as complete as possible to avoid 
introducing observations that deviate from the normal behavior of the data, which in turn 
can introduce noise to algorithms.

•	 Together with an expert from ICAFE, we proceeded to analyze the set of extracted data: 
the identification of stations with similar weather conditions (it is determined that the area 
of Los Santos, represented in purple, meets these characteristics), which datasets contain 
complete (or almost complete) data, the definition of the data filling criteria according to 
the number of missing hours (only blank spaces less than 4 hours are filled in) and the 
season of the year in which said data is missing. All the above was done in order to define 
the weather stations and intervals in the time series that will be the basis for training the 
machine learning model.

•	 We carried out an automatic data filling process through all stations 9, 10, 11 and 12 
in the Los Santos area. This process consists of filling in any missing data less than or 
equal to 4 hours of data in a day. If the range of missing hours is greater, interval files are 
generated indicating the initial day with its initial time and the final date with its final time, 
thus identifying when the data could not be filled in since there was a time gap greater 
than 4 hours.

•	 The interval files generated for each station were analyzed to verify if it is feasible to 
manually fill in the data. The number of days in the missing gap were examined: which 
month of the year it is located, and, through observation of all the variables’ behaviors, 
it is decided whether to fill in the data with data from previous days and check that the 
variables share a behavior similar to the days that directly adjoin the missing days.

According to the steps detailed above, it is determined that stations 9, 10, 11 and 12, with dates 
between December 2013 and April 2015, give us the possibility of having 4 stations with similar 
geographical conditions and each one with 12,382 observations, one observation per hour every 
day from December 2013 to April 2015.
Next, it was evaluated if the data follow a normal distribution, by using skewness and kurtosis. 
Skewness and kurtosis values between -2 and +2 are considered acceptable to demonstrate 
a normal univariate distribution (George Mallery, 2010). Cabello et al. (2010) and Bryne (2010) 
argued that the data is considered normal if the skewness is between -2 and +2 and the kurtosis 
is between -7 and +7 [10].
Unlike the other variables, precipitation has a distribution like the Pareto distribution [11]. 
Precipitation was the only variable that did not meet the requirement of following a normal 
distribution and is one of the assumptions required by the EMB algorithm when imputing 
the data, however, in the results section it will be expanded how EMB performed, with and 
without precipitation. The algorithm was able to impute missing values even when dealing with 
precipitation, without significantly raising the error.

Proposed machine learning architecture using LSTM
A couple of variations of LSTM architectures were considered by hyperparameterization with 
different tools such as Keras Tuner and Wandb. The deep learning architecture developed in 
this research is based on the architecture proposed by Alhamid in [12]. In his work, Alhamid 
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proposes an architecture based on 2 hidden layers, followed by 2 bidirectional LSTM layers and 
an additional hidden layer. The input is a sequence of events, and the output is the prediction 
of the next event in the sequence. 
Based on the study by Sucholutsky [13], some recommendations and guidelines provided in 
his research are compiled for the present research: the use of the Adam optimizer and the 
suggestion of including a bidirectional RNN as future work; he uses 5 hidden layers, however, 
he concludes that additional layers do not improve performance.
The input layer of our model is a Sequential layer, followed by an LSTM layer with 64 units and 
uses 24 steps in the past (for prediction) and the 5 variables. The next layer is a Bidirectional 
layer that wraps an LSTM layer with 32 units and a 0.5 dropout. Next, there’s a Gaussian Noise 
layer to add robustness (mitigate overfitting). 
The next layer is a Repetition Vector with 1 step to the future, this layer works as a bridge 
between the encoder and decoder. Next, the decoder is defined as a mirror of the first LSTM 
encoder layer. Then, a Gaussian Dropout layer with a dropout probability of 0.5 is used.
Finally, the output layer is a Time Distributed layer that wraps a Dense layer, which outputs 1 
step in the future for the 5 variables and has “relu” as activation function.

Figure 2. Proposed LSTM architecture.

Hyperparameterization

EMB
The EMB algorithm did not require any hyperparameterization (since trying to parameterize it 
did not provide improvements to the performance and added execution time), the missing data 
were imputed with the “default” configuration. The algorithm is represented in its most basic form 
by not specifying a time column, since this generates more processing time, therefore, the time 
complexity is not limited by some polynomial (referring to polytime and splinetime parameters 
from the Amelia library in R).
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MissForest
The MissForest algorithm was not hyperparameterized (except for experimental design B, 
however, the “default” configuration neither other variant in configuration managed to address 
the problem of filling in consecutive data gaps). Adding more decision trees did not show 
improvements and the other default parameters applied well for the current case. Within the 
possibilities presented by the algorithm, the “fit” can be done on a weather station and the 
“transform” can be done on another weather station, unlike EMB, which can only impute on a 
weather station without carrying out any prior training or analysis.

LSTM
The LSTM model was hyperparameterized using the random search methodology on the 
parameters: timesteps, epochs, learning rate, merge mode and loss. The model that seems to 
minimize (RMSE, MAE) or maximize (R2) the metrics was chosen.
Table 1 shows the variables and values tested during hyperparameterization. To reduce the 
number of experiments, station 9 and station 10 sets were always used. To choose the best 
model, the results produced by RMSE, MAE and R2 were considered when predicting data for 
the 1%, 3%, 5%, 10%, and 20% missing rates.

Table 1. Hyperparameters and values used in the random search of the LSTM model parameters.

Hyperparameter Tested Values Selected Value

Batch size 128, 64, 32, 16 32
Activation function relu, sigmoid relu

Timesteps 72, 48, 24, 12, 5 24
Epochs 100, 80, 50, 20, 10 100

Learning rate 0.0001 0.0001
Merge mode sum, mul, concat, ave concat

Loss mse mse

Experiments: Results & Discussion

Experimental Design A
Weather station 9 dataset is used for training, validation and testing the proposed LSTM 
architecture. Then, the model predicts missing data from weather stations 10, 11 and 12. 
Missing data is selected at completely random cells (timestamp x variable cell).
Table 2 shows the results obtained for station 10. We evaluated metrics MAE, RMSE, R2 and 
Execution time for each algorithm (EMB, MissForest and LSTM model) at 1%, 3%, 5% and 10% 
of missing data. This means, 1% represents imputation on a station 10 dataset in which 1% of 
its data is missing, and so on with each of the percentages.
LSTM does show a higher error rate compared to MissForest and EMB. As limitations, it is found 
that EMB can only impute data using the same station (station 10 is used), MissForest can fit with 
one station and impute another station (fit with station 9 and imputation on station 10; only 80% 
of station 9 was used for fitting, since for the LSTM model 80% is for training).
The results based on RMSE metric show that MissForest and EMB do much better than the 
proposed LSTM architecture, indicating greater error when imputing, being MissForest the one 
with the best metrics overall. However, for 1%, 3%, 5% and 10% of missing data in R2, LSTM 
architecture competes with good metrics against MissForest and EMB algorithms.
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Table 2. Experimental design A. Metrics resulting from data imputation 
on weather station 10 and training with station 9.

EMB MissForest LSTM model

MAE RMSE R2 Execution 
time MAE RMSE R2 Execution 

time MAE RMSE R2 Execution 
time

1% 0.01 0.11 0.99 1.86 sec 0.001 0.05 0.99 56.00 sec 0.02 0.54 0.99 4.00 sec
3% 0.03 0.32 0.99 2.48 sec 0.01 0.24 0.99 55.00 sec 0.07 0.91 0.98 4.00 sec
5% 0.05 0.42 0.98 1.72 sec 0.02 0.30 0.99 65.00 sec 0.12 1.20 0.97 5.00 sec
10% 0.12 0.88 0.93 2.08 sec 0.05 0.65 0.96 37.00 sec 0.26 1.74 0.91 5.00 sec
20% 0.31 1.70 0.88 2.84 sec 0.17 1.24 0.92 52.00 sec 0.58 2.47 0.82 4.00 sec

Experimental Design B
This variant contemplates the possibility that the missing data is presented sequentially for all the 
variables, replicating the use case for when the sensor recording the weather data completely 
loses tracking of the variables for a period of 2 to 5 consecutive days until reaching 1%, 3%, 5%, 
10% and 20% of missing data. Among the important findings, it was observed that MissForest 
completely fails to handle the imputation of consecutive data on all variables. Even though 
EMB assumes that the missing data is found randomly (missing at random assumption), it still 
manages to impute the missing data more effectively than the other algorithms in comparison. 
The proposed LSTM algorithm repeats data from previous windows, since it doesn’t have 
information from other variables (only from the 24-hour window of past steps) and, therefore, 
imputation is not good.

Experimental Design C
Considering that recurrent neural networks require a lot of data for training and in the previous 
experiments the amount of data present per season is relatively little (1 year and 4 months), we 
proceeded to evaluate other ranges (in years).  Seasons 8 and 9 coincide with data from 2014 
to 2018 (doubling the amount of data). The algorithms are re-trained and retested, but with more 
data. Essentially, this design is like experimental design A, but using more data, and training with 
season 8 and imputing on season 9. 
Metrics are very similar to the results from experiment A (less than half the data), regardless, 
there was a small improvement.

Table 3. Experimental design C. Metrics resulting from data imputation 
on weather station 9 and training with station 8.

EMB MissForest LSTM model

MAE RMSE R2 Execution 
time MAE RMSE R2 Execution 

time MAE RMSE R2 Execution 
time

1% 0.01 0.10 0.99 4.66 sec 0.001 0.07 0.99 144.00 sec 0.02 0.52 0.99 12.00 sec
3% 0.02 0.21 0.99 4.9 sec 0.004 0.15 0.99 142.00 sec 0.06 0.79 0.98 12.00 sec
5% 0.03 0.30 0.98 5.00 sec 0.01 0.20 0.99 114.00 sec 0.10 1.03 0.96 12.00 sec

10% 0.07 0.55 0.96 5.17 sec 0.03 0.38 0.98 198.00 sec 0.22 1.43 0.92 23.00 sec
20% 0.22 1.21 0.89 5.43 sec 0.11 0.88 0.93 111.00 sec 0.50 2.04 0.79 23.00 sec

Experimental Design D
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In this experimental design, a new dataset was created by using each variable from the season 
that was best correlated with the variable in question. A new mixed dataset that contains the 
5 variables taken from the best correlated stations is created. To illustrate the above, if the 
precipitation variable from season 9 is to be imputed, one looks for which of the nearby stations 
10, 11 or 12 has the best correlation regarding the precipitation variable and extracts that entire 
column of data. This goes the same way for the remaining variables. 
We train the model with the new mixed dataset and impute on the original dataset with missing 
gaps. This experiment was not performed on EMB nor MissForest since it focuses on the training 
phase. EMB and MissForest results from experiment A were compared against the results of 
experiment D of the proposed LSTM. When comparing experiments A and D it was concluded 
that, despite the fact that the stations are imputed by variable in correlation with other stations in 
the same geographical area, when combining the station variables, the metrics do not improve 
and this could be explained due to the loss of the real behavior of the data and trend between 
the variables.

Experimental Design E
In this experimental design test, it is intended to simulate the scenarios of real cases to which 
ICAFE is exposed to when there is data loss (lack of battery in the solar sensor, missing at 
random hours due to short circuit, missing in ranges less than 24 hours due to desynchronization 
with the datalogger, among others). It is important to clarify that the missing data developed 
in this section were generated manually, simulating the possible scenarios of missing data in 
ICAFE (missing only a few or all variables for multiple consecutive or non-consecutive hours; 
mixing these cases for a weather station until reaching the missing data rate). 
Next, in Table 4 the metrics obtained in this design are shown and it can be deduced that the 
LSTM model performs better than the EMB and MissForest imputation algorithms.

Table 4. Experimental design E. Metrics resulting from data imputation 
on weather station 10 and training with station 9.

EMB MissForest LSTM model

MAE RMSE R2 Execution 
time MAE RMSE R2 Execution 

time MAE RMSE R2 Execution 
time

1% 0.05 0.78 0.98 2.18 sec 0.03 0.43 0.99 76.00 sec 0.02 0.40 0.99 5.00 sec
3% 0.14 1.32 0.94 2.35 sec 0.09 1.00 0.97 40.00 sec 0.08 0.93 0.98 5.00 sec
5% 0.23 1.68 0.92 2.18 sec 0.15 1.32 0.95 40.00 sec 0.13 1.25 0.96 5.00 sec
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Figure 3. Experiment E, imputation for variable Rain with missing data at 1%, 3% and 5% rate.

If we look at the algorithm’s predictions per variable (the original value is in yellow and the 
predicted value by the algorithm is in the other color), we can conclude that:

•	 Regarding the Rain variable, Figure 3 shows that EMB keeps imputing data, almost 
at random, in a range. MissForest does not try to predict the values or get close to an 
approximate and LSTM tries to predict the missing data in a more intelligent way by trying 
to follow the behavioral pattern of the data.

•	 Results for dew point, maximum temperature,outdoor humidity and outdoor temperature 
show that EMB is the algorithm that best deals with imputation of the missing data, 
MissForest does not try to predict the values or come close to an approximate and LSTM 
tries to predict the missing data the same by following the behavior patterns, however it 
has a lower limit that does not allow it to impute below itself, still, LSTM demonstrates it 
looks for trends and seasonalities to predict missing values.

•	 We raise the question if evaluating the same LSTM model but without an activation function 
will have an effect on the lower limit indicated in the previous point.

•	 Additionally, for each of the variables, it is evaluated an acceptance range (using a scale of 
minimums and maximums provided by ICAFE per variable and, furthermore, evaluating the 
website https://www.tiempo3.com/north-america/costa-rica?page=today and determining 
what could be the ranges in which a variable can vary from one hour to another). In this 
way it is established that:

	» Rain: In the morning it changes little, about 0.33 mm every 3 hours, and at night 
the change between hours can go up to 6 mm. Minimum and maximum acceptable 
values: 0 – 25 mm. Accepted difference respecting the original value vs. the imputed 
value: 1 mm.

	» Temp Out (outside temperature): There’s abrupt changes when the sun comes in 
and out; can be up to 4 degrees. Minimum and maximum acceptable values: 10 – 40 
degrees Celsius. Accepted difference respecting the original value vs. the imputed 
value: 2 degrees.
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	» Hi Temp (maximum temperature): Must be greater than or equal to Temp 
Out. Minimum and maximum acceptable values: 10 – 40 degrees Celsius. Accepted 
difference respecting the original value vs. the imputed value: 2 degrees.

	» Out Hum (outside humidity): It can vary by 3% and when the sun rises, can change 
up to 5%.  Minimum and maximum acceptable values: 40 – 100 %.  Accepted 
difference respecting the original value vs. the imputed value: 3%.

	» Dew Pt. (dew point): May vary by 2 degrees and cannot be greater than the 
outside temperature. Minimum and maximum acceptable values: 10 – 40 degrees 
Celsius. Accepted difference respecting the original value vs. the imputed value: 2 
degrees.

To calculate if a value is accepted, it is only evaluated if the imputed value falls within the 
acceptance range established by variable or if it meets the restrictions of being greater than 
another variable (in the case of dew point and outside humidity), in any other case said imputation 
is rejected. The results obtained from evaluating the algorithms with acceptance ranges can be 
seen in Table 5; for each season, it was calculated the percentage accepted values represented 
in the total count.
It is perceptible that given the acceptance ranges described, the acceptance percentages 
achieved by LSTM demonstrate better performance against the imputations made by the other 
algorithms.

Table 5. Experimental Design E. Metrics obtained by evaluating EMB, MissForest and LSTM with acceptance ranges.

EMB MissForest LSTM model
S9 S10 S11 S12 S9 S10 S11 S12 S9 S10 S11 S12

1%

3%

5%

0.40

0.37

0.35

0.34

0.33

0.31

0.37

0.37

0.35

0.30

0.30

0.28

0.48

0.60

0.58

0.51

0.50

0.50

0.45

0.53

0.51

0.43

0.43

0.46

0.71

0.66

0.67

0.51

0.52

0.54

0.66

0.63

0.62

0.43

0.44

0.46

Concluding remarks
The MissForest algorithm has the best results in experiments A, C and D, based solely on metrics. 
However, MissForest fails to impute missing data consecutively for all columns simultaneously: 
in the experimental design E, it is shown that MissForest, despite having acceptable general 
metrics, gets stuck at mean imputation (which is the first step on the algorithm). At the level of 
visualization per variable, the graphs demonstrate MissForest isn’t trying to impute missing data 
at all. MissForest needs multivariate data, but in experimental design B and E, data was missing 
consecutively for all variables. The EMB algorithm seems to be the best option for experimental 
design B, but metrics were not competitive compared to the ones obtained in other experimental 
designs.
The LSTM model in experimental case C shows that the greater the amount of data for training, 
the model shows small improvements in the imputation metrics. However, there is little availability 
of data between stations in the same area that allow us to verify if with a substantial number of 
years of data, the algorithm improves significantly. Similarly, the results obtained in experimental 
design D did not represent a significant improvement. Even though its metrics compete with the 
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results from experimental design A, it is not recommended to use this approach, especially when 
dealing with time series data, given that when you create a new dataset that does not represent 
the original behavior of data, you can introduce noise and lose seasonality and trends.
When an analysis is performed per variable on experimental design E, with acceptance ranges 
or rejection criteria for each imputation made by the proposed LSTM, EMB and MissForest 
algorithms, it is concluded that the imputations made by LSTM have better acceptance rates 
compared to the other algorithms. Even though, visually, EMB seems to follow the data patterns 
to an extent, predictions fail to fall into the acceptance ranges in its majority. LSTM did a 
better job at understanding the actual behavioral model of the data, since predictions fulfill the 
acceptance criteria for the most part. However, LSTM predictions have a lower limit that does 
not allow it to impute below itself.
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