
Tecnología en Marcha. Vol. 35, special issue. December, 2022
IEEE International Conference on Bioinspired Processing46

Design of a microkernel-
based services manager for IoT
with isolated processing
Diseño de un gestor de servicios IoT basado
en microkernel con procesamiento aislado
Jose Antonio Ortega-González1, Luis G. León-Vega2

Ortega-González, J.A.; León-Vega, L.G. Design of a mi-
crokernel-based services manager for iot with isolated pro-
cessing. Tecnología en Marcha. Vol. 35, special issue. IEEE
International Conference on Bioinspired Processing. Decem-
ber, 2022. Pág. 46-52.

 https://doi.org/10.18845/tm.v35i9.6492

1 Computer Engineering Student, Instituto Tecnológico de Costa Rica. Costa
Rica. E-mail: j.ortega98@estudiantec.cr

 https://orcid.org/0000-0002-2924-7037
2 Master’s in Electronics Student, Instituto Tecnológico de Costa Rica. Costa

Rica. E-mail: lleon95@estudiantec.cr
 https://orcid.org/0000-0002-3263-7853

Tecnología en Marcha. Vol. 35, special issue. December, 2022
IEEE International Conference on Bioinspired Processing 47

Keywords
Internet of things; scheduling algorithms; protocols; high-performance computing; web services;
distributed computing.

Abstract
The development of projects related to the Internet of Things has generated a significant impact on
the growth of the software industry. Although there are several alternatives to their development,
users are limited by inherent factors, such as vendor lock-in, software development flexibility,
and security. This article shows a platform design that provides a deployment and management
system for IoT projects avoiding some of the limitations of the current tools, such as vendor lock-
in and limitations in the development technologies.

Palabras clave
Internet de las cosas; algoritmos de calendarización; protocolos; computación de alto
rendimiento; servicios web; computación distribuida.

Resumen
El desarrollo de proyectos relacionados con el Internet de las Cosas (IoT, por sus siglas en
inglés) han generado un impacto significativo en el crecimiento de la industria del software.
Si bien existen alternativas para su desarrollo, los usuarios se ven limitados por factores
inherentes, tales como la dependencia de un proveedor, flexibilidad de desarrollo de software y
seguridad. Este artículo muestra el diseño de una plataforma que facilita el despliegue y manejo
de proyectos de IoT, solventando algunos de los retos actuales del mercado como los bloqueos
de proveedor y limitaciones en las tecnologías de desarrollo.

Introduction
Web services development has been rapidly evolving, moving from monolithic and microservices
architectures until arriving at the serverless approach, where a provider offers the option to only
upload programmed functions. In particular, the serverless architecture came as a solution to
reduce operational costs and has proven to be a good fit for IoT applications [1], with quick set-
up times and focusing the development on the application functionality.
Serverless is a paradigm that provides processing resources based on uploading and setting
individual functions executed on demand and includes subtasks to other services without having
them in the same monolithic environment, such as running a database query or sending a
message through the network. The serverless provider fully manages server maintenance tasks,
software installation, and security.
Amazon, Google, and Microsoft offer several alternatives for serverless applications. However,
most of these products have vendor lock-in or technology limitations that restrict users to migrate
from one service to other, as mentioned in [2], tying customers to a single cloud provider and
making it difficult and expensive to move to a different vendor in the future. Moreover, there are
restrictions to the functionality and the software that can run on the serverless instance. Therefore,
there are concerns about vendor lock-in when adopting a cloud service in new projects [3].

Tecnología en Marcha. Vol. 35, special issue. December, 2022
IEEE International Conference on Bioinspired Processing48

There are open-source approaches such as Apache OpenWisk, OpenFaaS, Knative, and
Kubeless, that offer an alternative to avoid vendor lock-in [4]. While these solutions provide
an advance, there are also remaining challenges to attend to, in particular, the security risk
due to the usage of containers [5]. Also, this project integrates services such as storage,
communication, and databases, with the computational power of the serverless approach.
This work aims to create an open-source platform that handles automated infrastructure creation
and deployment to speed up IoT projects development avoiding vendor lock-in and improving
security. Our target is a high-performant, robust, flexible, scalable, reliable, and easy to use system.

General System Design
The system follows a microkernel-like architecture, which provides communication and
scheduling functionalities and delegates other functionalities as services connected to it [6]. In
our work, the services comply with a serverless infrastructure for delivering basic web service
functionality.
Figure 1 shows a top-level architecture for the system where services are connected to the
Kernel using Inter-process communication (IPC). The Kernel controls the operation providing an
agnostic communication mechanism between the services. The Doer is an isolated environment
that manipulates Workers for process execution. The DBriver is a database administrator that
handles SQL and NoSQL database entities. The CommServer handles the communication
services based on HTTP and MQTT network protocols. The Resadmin is responsible for the
management of the resources and the users. The Control Gate dashboard allows users to create
and control their IoT Projects entities.

Figure 1. Top-level platform architecture.

Tecnología en Marcha. Vol. 35, special issue. December, 2022
IEEE International Conference on Bioinspired Processing 49

Kernel
Figure 2 shows the Kernel design. The Kernel consists of four main modules and one module for
interface purposes. We start with the IPC Module, which handles all the communication amongst
the services. This communication is implemented over an IPC protocol provided by ZeroMQ [7],
a high-performance message passing library that provides Operating System (OS)-agnostic
support for multiple protocols and communication patterns to create an infrastructure for several
services. The IPC Module connects to the IPC Connections that provide the mechanism for each
service to send and receive a message from the Kernel and other services. It can be seen as
an abstracted software interface.
We propose the Process Controller for the processes and their management, which handles all
the requests that arrive at the system and manages them as processes. Besides, we propose
a priority-based queue as Scheduler. It handles the message (process) dispatching for each
service. Each queue is a Red-Black Binary Search Tree (BST) where the message with the
highest priority will be at the left, similar to the Completely Fair Scheduler (CFS) from Linux. Last,
we propose a Services Controller to handle the information related to the services connected to
the Kernel.

Figure 2. Kernel design overview.

Doer
Figure 3 shows a design overview of the Doer. The Doer is a serverless implementation based
on Singularity [8] as a virtualization tool also used in FuncX [9] for Python serverless execution,
which could be used in local and cloud environments, provides better security than other tools
such as Docker, and focuses on native integration of high-performance computing tools.

Tecnología en Marcha. Vol. 35, special issue. December, 2022
IEEE International Conference on Bioinspired Processing50

The logic for each project is executed using the Doer, which includes three main modules:
1) The Doer Admin handles the requests that arrive at the Doer and holds them as tasks. It
manages three queues depending on the state of each task. 2) The Worker Handler invokes and
controls the Workers, isolated environments based on containers for executing the programmed
functions (called in this project as Doees). 3) The Worker: is the environment where the functions
are executed. We are using Singularity containers to provide a safe and isolated environment.
Furthermore, 4) The Doee Executor handles the execution of the Doees within the containers.
It resides in each worked as a server daemon and is triggered when the Worker receives an
execution request.

Figure 3. Doer design overview

Since the Doer involves the communication of a host server with isolated Singularity containers,
we propose using of ZeroMQ as the communication bridge.

Doee
The functions executed by the Workers are called Doees. They are custom pre-compiled shared
objects, compiled just after the source code of the Doee is added to the platform. A Worker
executes the Doee after a trigger, which can be an action specified like an HTTP GET request.
It adds support for other programming languages by using object bindings and interfaces.
The Doee Executor requests the Resadmin to provide the pre-compiled binaries of a single
Doee, so the Worker will only contain one Doee at a time. Figure 4 shows the structure of the
Doees and how they are created.

Tecnología en Marcha. Vol. 35, special issue. December, 2022
IEEE International Conference on Bioinspired Processing 51

Figure 4. Example of the Doee usage.

Figure 4.a is the structure of the Doee interface class; it requires three main functions: 1) Initialize
sets the Doee resources required to execute the process, initializes the socket for external
communication, the database connection for queries, and retrieves the parameters to be used
in the process. 2) Execute runs the Doee standard process and a specific logic implemented by
the actual user implementation (concrete Execute method). Then, we have 3) Terminate, which
closes the connections and resources initialized by the Initialize function.
The Doee class is a pure virtual class, and it cannot be executed like any other function. It shall
be implemented by a Custom Doee defined by the developer through inheritance, where the
specific logic of the function is implemented. Figure 4.b shows how the custom Doee is defined:

1. Declaration: The Custom Doee is declared, and the inheritance is automatically added.
Also, between the declaration, the developer can define attributes and functions to be
used for this Custom Doee.

2. Initialize, Execute and Terminate works as same as for the Doee class.
3. Custom Doee is the function that is executed in the Worker.

The current development of the project can be found in [10]. Updates and new modules will be
added there.

Conclusions
Our proposal addresses the vendor lock-in by offering an open-source solution capable of being
installed in any computing premise proposed by Apache Open Wisk, Open FaaS, Knative, and
Kubeless. Moreover, our contribution to safety is based on Singularity, as applied by FuncX,
which differs from many current cloud-based methods in the market.

Tecnología en Marcha. Vol. 35, special issue. December, 2022
IEEE International Conference on Bioinspired Processing52

The platform has more services under development that will be addressed in future work, such
as the Resadmin, DBriver, CommServers, and the Control Gate. These modules provide a more
integrated platform that offers storage and management to the overall infrastructure. Besides,
we plan to compare FuncX and our platform to validate our implementation, executing Python
functions.

References
[1] G. McGrath and P. R. Brenner, “Serverless Computing: Design, Implementation, and Performance,” IEEE, vol.

37th, pp. 405-410, 2017.
[2] J. Opara-Martins, R. Sahandi and F. Tian, “Critical review of vendor lock-in and its impact on adoption of cloud

computing,” nternational Conference on Information Society, pp. 92-97, 2014.
[3] J. Opara-Martins, R. Sahadi and F. Tian, “Critical analysis of vendor lock-in and its impact on cloud computing

migration: a business perspective,” Journal of Cloud Computing, pp. 1-18, 2016.
[4] A. Palade, A. Kazmi and S. Clarke, “An Evaluation of Open Source Serverless Computing Frameworks Support

at the Edge,” 2019 IEEE World Congress on Services (SERVICES), pp. 206-211, 2019.
[5] S. Sultan, I. Ahmad and T. Dimitriou, “Container security: Issues, challenges, and the road ahead,” IEEE

Access, vol. 7, pp. 52976-52996, 2019.
[6] A. S. Tanenbaum, Modern operating systems, Boston: Pearson, 2015.
[7] ZeroMQ, “ZeroMQ,” 2021. [Online]. Available: https://zeromq.org/. [Accessed 2021].
[8] “SingularityCE,” Sylabs, 2022. [Online]. Available: https://sylabs.io/singularity. [Accessed 2022].
[9] R. Chard, T. J. Skluzacek, Z. Li, Y. Babuji, A. Woodard, B. Blaiszik, S. Tuecke, I. Foster and K. Chard,

“Serverless Supercomputing: High Performance Function as a Service for Science,” 2019.
[10] J. A. Ortega and L. León, “IoT Services Management System [Source Code],” 2022. [Online]. Available: https://

gitlab.com/klooid/isms/isms-kernel. [Accessed 2022].

