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Abstract
Performing inference of complex machine learning (ML) algorithms at the edge is becoming 
important to unlink the system functionality from the cloud. However, the ML models increase 
complexity faster than the available hardware resources. This research aims to accelerate 
machine learning by offloading the computation to low-end FPGAs and using approximate 
computing techniques to optimise resource usage, taking advantage of the inaccurate nature of 
machine learning models. In this paper, we propose a generic matrix multiply-add processing 
element design, parameterised in datatype, matrix size, and data width. We evaluate the 
resource consumption and error behaviour while varying the matrix size and the data width given 
a fixed-point data type. We determine that the error scales with the matrix size, but it can be 
compensated by increasing the data width, posing a trade-off between data width and matrix 
size with respect to the error.
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Resumen
La inferencia en algoritmos complejos de aprendizaje automático (ML, por sus siglas en inglés) 
en edge computing está tomando importancia para desvincular la funcionalidad de un sistema 
de la nube. Sin embargo, los modelos de ML incrementan en complejidad más rápido que los 
recursos de hardware disponibles. Esta investigación tiene como objetivo acelerar el aprendizaje 
por automático al delegar el cálculo computacional a FPGAs de baja gama y usar computación 
aproximada para optimizar el uso de los recursos aprovechando la naturaleza inexacta de los 
modelos de aprendizaje automático. En este artículo, proponemos un diseño de un elemento de 
procesamiento genérico de multiplicación-suma de matrices, parametrizado en el tipo de dato, 
tamaño de la matriz y ancho del dato. Evaluamos el comportamiento del consumo de recursos 
y del error mientras variamos el tamaño de la matriz y el ancho del dato dato un tipo de datos 
de punto fijo. Determinamos que el error escala con el tamaño de la matriz pero que puede ser 
compensado al incrementar el ancho del dato, representando un compromiso entre el ancho 
del dato y el tamaño de la matriz con respecto al error.

Introduction
Deep neural network (DNN) models constantly increase in complexity over time, while edge 
computing systems tend to be steady in their capabilities [1]. Power consumption is a common 
concern when moving inference to the edge, adding complexity to dealing with the trade-off 
between resources and inference time. One possibility to add more control over this trade-off 
is to use Field Programmable Gate Arrays (FPGA), which are devices capable of reconfiguring 
their logic and implementing custom hardware designs. This implies exploring the synthesis of 
inference algorithms described with Hardware Description Languages (HDL) or using High-Level 
Synthesis (HLS), tools capable of converting C/C++ untimed code to Register Transfer Level 
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(RTL) [2,3]. There are also pre-built alternatives to leverage inference to FPGAs using vendor 
IP cores, such as Vitis AI and OpenVINO [4,5]. However, most alternatives focus on mid-end to 
high-end FPGAs, leaving aside the low-end solutions that exhibit less power consumption.
One downside of the pre-built alternatives is that they limit the optimisation opportunities beyond 
pruning and fixed-point representation. This research aims to address the use of FPGAs to 
accelerate machine learning operations rather than represent the whole model in hardware, 
precisely placing the accelerators required for the model execution, improving hardware 
utilisation, and achieving better energy consumption. The key contribution of this research is the 
proposal of a framework for creating custom architectures according to the model requirements, 
in particular, tuned in arbitrary numerical representation, number of processing elements (PE), 
and quantisation techniques.

Background and Related-Work
According to the state-of-the-art, there are implementations for accelerating matrix-matrix 
multiplications and convolutions at the industry level. Intel and NVIDIA propose AMX and Tensor 
cores, respectively, which accelerate matrix fused multiply-add (FMA) [6,7]: D = AB + C integer 
arithmetic. Convolutions have been optimised through mathematical manipulation. For instance, 
the Winograd algorithm reduces the number of multiplications involved in the convolution by 
using a domain transformation [8]. It presents multiple advantages, such as memory footprint 
and better performance than the spatial convolution, achieving more than 3x in speedup [8].

Figure 1. Structure of the research proposal.
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Our proposal is presented in Figure 1. It considers the implementation of 1) a set of generic 
accelerators implemented in standard C++, synthesised using Vivado HLS, and parameterised 
in datatype, the number of bits, arithmetic operands and number of PEs. 2) A device 
driver to communicate the accelerators to Linux as the host Operating System and sample 
implementations using Tensorflow for benchmarking. These implementations are part of a 
framework for accelerating inference in low-end FPGAs.
The research analyses common mathematical operations performed during model inference, 
mainly matrix-matrix multiplications, convolutions and non-linear activations. It leads to having a 
baseline for the accelerators library, which is parameterised to make the designs more flexible 
than the typical implementations offered in CPUs, GPUs and TPUs, allowing the designer to 
explore optimisation opportunities. After the first set of implementations in HLS, the PEs will be 
analysed to model their behaviour when tuning the numerical precision and varying the operand 
sizes, observing their impact on resource utilisation, numerical errors and energy consumption. 
It will help users create and evaluate accelerator candidates according to the complexity of the 
ML model and their design constraints.
For this work, we will focus on the first stage of our framework (the set of accelerators), particularly 
with a fixed-width matrix fused multiply-add (FMA) PE, parameterised in datatype, data width, 
and matrix size. In this case, the FMA operator implementation keeps the data width in the 
output, involving a scaling factor that depends on the matrix dimensions to mitigate the overflow:

𝑑𝑑′	 = 	
𝑎𝑎𝑎𝑎
2𝑁𝑁 +

𝑐𝑐
2𝑁𝑁 , 𝑑𝑑	 = 2𝑁𝑁𝑁𝑁′	 		  (1)

where a, b, and c are the input operands, N is the number of rows considering a square matrix, 
and d is the output.

Methodology
We start the implementation of the matrix FMA by using standard C++ to define the algorithm 
itself. After having a correct implementation using floating-point numbers, we start by 
parameterising the implementation at the data type, matrix size, and the number of bits level. It 
will lead to inaccuracies in the results that must be evaluated before applying the implementation 
to an actual application. In this case, we evaluate the errors by using a normalised mean error 

𝜉𝜉	 and its standard deviation 𝜎𝜎(𝜉𝜉)	, computed as
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(2)

where K is the number of elements of the matrix evaluated (including 10 iterations with different 

seeds), yi is the i-th floating-point result (matrix entries), 𝑦𝑦" 	 is the measured value in a custom 
data type and a number of bits, and α is the normalisation factor (set to 2 given the numerical 
range from ] –1,1 [ ).
After evaluating the numerical impact, we proceed with the iterative design optimisation, adding 
pipelining, registers, and concurrency to the implementation. These optimisations are added 
through Vivado HLS directive files. In this case, we will present our Pareto’s optimal solution.
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Results

Figure 2. Resource consumption of the current best FMA processing element for 8x8 
matrices. The resources analysed are Digital Signal Processors (DSPs), Look-Up Tables 

(LUTs), Block Random Access Memories (BRAMs), and Flip-Flops (FFs).

Figure 2 presents the results of our current FMA implementation (see [9]). It scales linearly with 
respect to the data width concerning the FFs used in the design. It has a discontinuity in the 
LUTs, switching the logic from LUTs to DSPs when the number of bits reaches more than 10 
bits, consuming almost 30% of an Avnet Zedboard (based on the Xilinx XC7Z020). Neither of the 
implementations consumes BRAMs since the PE corresponds to an operator, and no memory 
is needed. However, the consumption depends on the design mapping when implementing the 
logic into RTL and the user requirements.

Normalised error while varying the number of bits of the 
fixed-point numerical representation for four matrix sizes

Normalised error while varyingø the matrix size for an 
8-bits fixed-point representation

Figure 3. Resource consumption of an 8-bit fixed-point 8x8 matrix MAC. The FMA 
with registers results is the intermediate case in resource utilisation.
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Since our FMA can specialise in arbitrary precisions, Figure 3 explores the numerical errors 
when tuning the numerical representation using (2). Figure 3.a shows how the error evolves as 
the number of bits invested increases, leading to an exponential decreasing behaviour.
The preservation of the number of bits of the output with respect to the input through the scaling 
of one of the registers, as described in (2), introduces a dependency on the matrix size in the 
error as presented in Figure 3.b. In this case, the bigger the matrix, the greater the error. It can 
also be noticed in Figure 3.a, showing that the most compressed precisions are heavily affected 
by the matrix size. A 4-bit representation scales the mean relative error from 7.5% up to 21%, 
having more than 40% peaks. As the number of bits increases, the error brought by the matrix 
size is compensated.

Conclusions
This work presented our matrix FMA as the first accelerator analysis of our deep learning 
inference framework for FPGAs. This framework aims to automate the generation of PEs for 
accelerating inference tasks while adding approximate computing to address issues concerning 
resource and energy consumption on low-end FPGAs. Our matrix FMA implementation shows a 
linear scaling in the resource consumption before less than 10 bits in the data width, showing for 
an 8-bit 8x8 matrix FMA a consumption of up to 11%. When having more bits, the consumption 
becomes constant at almost 30%, where the scaling in resource consumption becomes agnostic 
to the number of bits from 10 up to 16 bits. In terms of errors, we noticed the influence of the 
matrix size on the error, where large matrix sizes lead to high variance and coarse errors, which 
can be compensated by increasing the numerical precision.
In future work, we are extending the analysis in the error characterisation to get models without 
the need for simulations. Moreover, more PEs are being developed.
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