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Abstract
Capability maps are an important tool for enabling robots to understand their bodies by 
providing a way of representing the dexterity of their arms. They are usually treated as static 
data structures be- cause of how computationally intensive they are to generate. We present 
a method for generating capability maps taking advantage of the parallelization that modern 
GPUs offer such that these maps are generated approximately 50 times faster than previous 
implementations. This system could be used in situations were the robot has to generate this 
maps fast, for example when using unknown tools.
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Resumen
Los mapas de capacidad son una herramienta importante para permitir que los robots 
comprendan sus cuerpos al proporcionar una forma de representar la destreza de sus brazos. 
Por lo general, se tratan como estructuras de datos estáticas debido a lo intensidad en 
computación que pueden generar. Presentamos un método para generar mapas de capacidad 
aprovechando la paralelización que ofrecen las GPU modernas, de modo que estos mapas se 
generan aproximadamente 50 veces más rápido que las implementaciones anteriores. Este 
sistema podría utilizarse en situaciones en las que el robot tiene que generar estos mapas 
rápidamente, por ejemplo, cuando se utilizan herramientas desconocidas.

Introduction
One of the challenges of modern robotics is to build robots that can work as competent 
autonomous assistants for humans, such that we can share the same workspaces. It is 
necessary to enable robots to understand their bodies and their capabilities. This would enable 
robots to reason about how to do certain tasks and whether or not they need tools or help from 
other agents to complete them. In particular we are interested on representing the dexterity of a 
robot, to enable it to eventually reason about the best ways to manipulate objects (find strategies 
for optimizing dexterity) [10,7].
One approach for representing robotic dexterity are capability maps. These are maps that 
assign a reachability measure to every point in space for a robotic arm; that is, how many 
ways the robot is able to reach a certain point in space [8]. Figure 1b shows an example of the 
capability map of the KUKA LWR 4+ arm (figure 1a). These maps have multiple application that 
will be discussed in section 2.
One of the drawbacks of capability maps is that they are very computation- ally intensive to 
generate, so they are normally calculated once and treated as static data structures [5,2]. But 
this is not always the most convenient approach. When designing a robotic arm, it is useful to 
see how changing certain parameters would affect the capabilities of the arm. Having rapid 
feedback can speed-up the design process. Another example were capability maps could 
change are if the arm of a robot changes while executing tasks. If a joint gets damaged and the 
robot decides that the best strategy is to lock it in-place to avoid further damages, the capability 
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map changes. Also, when the robot is using a tool we are interested on the tip of the tool rather 
than the tip of the arm. So, whenever the robot picks a new previously unknown tool, it is possible 
that it will require to generate a new capability map that takes into consideration the effects of 
the tool.
As shown previously, there are certain situations where we would need to generate capability 
maps fast. In this paper we present a method for generating them using the parallel computation 
capabilities of modern GPUs and show how this approach differs from previous implementations.

Related work
Since very early in the development of redundant robotic manipulators, there has been a 
discussion about how to measure dexterity. One of the proposed dexterity measures is to 
analyze the amount of orientations that a robot can reach at the point of interest [4]. This idea 
was then expanded into capability maps, which are maps that represent how many orientations 
a robotic arm is able reach in every point of its workspace [11]. The points where the robot is 
able to reach many orientations are considered points of high dexterity, while points that are only 
reached with one orientation are considered points of low dexterity.
The first generation approaches only took into consideration using inverse kinematics for 
deciding if a pose was reachable or not [11]. This generation method was very slow. To increase 
performance a method that used forward kinematics was introduced, but this meant an accuracy 
penalty [9].
Capability maps have been used in a variety of applications. They have been used in planning, 
for deciding where to position the body of a robot in front of a table to optimize its manipulation 
capabilities [6], they have also been used to understand dual-arm manipulation, both for control 
[5] and for designing hardware [1].
There is a previous example of generating the workspace of a robotic arm with a GPU based 
approach. They were able to generate the workspace in less than a second [3]. The workspace 
is the set of positions that can be reached by the robot, but does not encode how well they are 
reached. They generated random robot poses and incorporated them into a point-cloud to build 
the workspace. This problem is easier because they don’t have to compute how well a point is 
reached, so they only need to reach each point once, but when generating a capability map 
each point has to be visited multiple times (from 500 to 6000 in the case of our experiments).

System Overview
The first step is to compute the hierarchical subdivision of space to be able to do the analysis 
[8]. Let C be the maximum reach length of the arm, we only take into consideration the cube 
centered on the arm origin of size 2C × 2C × 2C. Each dimension is divided into Nc equal 
segments, giving a total of  voxel. For generating the orientations we used the Euler angles 
intrinsic convention, also known as yaw, pitch and roll. For generating the pitch and yaw we 
considered the problem of dividing a sphere’s surface into Ns equal areas. This was achieved by 
creating a Fibonacci spiral where the ns th section center is given by (1), with j being the golden 
ratio, as shown in figure 1c. And finally the roll is generated by dividing 2π into Nr equal parts.

θyaw = 2π (2 - j) ns,θpitch = arcsin (-1+2 ) (1)
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(a) Real kuka arm in our robot for 
reference 

(b) Capability map generated 
from over 109 random poses. Red 
is low reachability and blue high 

reachability

(c) Distribution of 100 points 
using the fibonacci spiral

Figure 1. Data generation examples.

There are three techniques to compute the scores for the voxels to create the capability map, use 
only forward kinematics, only inverse kinematics or the hybrid approach. Because we are seeking 
a very fast generation of the map, the pure forward kinematics is used. There is an accuracy 
penalty (11.45% loss in the worst case) that is paid for using only forward kinematics [9].
It is necessary to generate random poses of the end-effector, for this purpose we generate a 
random number for each joint from a uniform distribution inside the joints limits and it is used as 
the joint state. Then the forward kinematics algorithm is used to compute the pose of the end 
effector. These poses are in- dependent from one another, therefore this is done in parallel in 
the GPU. The parallel forward kinematics solver was implemented from scratch. These is done 
by generating the homogenous matrices that represent the transformations of each joint and link 
of the kinematic chain that model the arm and multiplying them in order [9].
The next step is to build the reachability map, this is to find the voxel in which the end-effector is, 
and which orientation from the generated ones is the closest. Although the reachability map is a 
6-dimensional structure (one dimension for each degree of freedom), we find it more efficient to 
represent it as a 2D matrix called reachability matrix. There is a row for each possible position, 
and a column for each possible orientation. Then the reachability map is represented by writing 
a 1 (or a True) in the (cp,cθ) coordinates of the matrix (where cp is the position of the voxel 
containing the end effector, and cθ the closest orientation). So, a 1 means that the position and 
orientation was reached, and a 0 means that it wasn’t.
For finding the position and orientation we do not do a normal search, because it is very slow, 
instead we take advantage of the fact that we know how the voxels and the orientations were 
generated to find the solution faster. The coordinate inside the reachability matrix for the row 
(position) is given by (2) where r()˙ is the round function, s is the step between voxel centers, 
(x,y,z) is the exact position of the end-efector, and (x0,y0,z0) is the position of the first voxel.

 (2)
We are using 3 x 3 rotation matrices for representing rotations, because of how well they work 
with forward kinematics. Let M be the matrix that represents the orientation of the end-effector, 
we know because of the intrinsic yaw-pitchroll that the entry M(2,0) represents the sine of the 
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pitch -sin(θpitch). Then solving for ns in (1) one knows that Cθ is between Cs and Cs + Nr where 
Cs= ⟦ (1-M(2,0))⟧. This means that for finding the nearest orientation we have reduced the 
search to a list of orientation of size Nr, instead of Ns x Nr.
To find the closest orientation we need to calculate the angle between each orientation and the 
resulting orientation of the end-effector. Let A and B be two rotation matrices, the angle between 
them is given by arccos ((Tr (ABT )-1)/2). The arccos function is very expensive to compute, so 
to avoid that we use the fact that it is monotonous in [0,π], therefore order relations prevail when 
using other functions (that are also monotonous). So, instead we calculate α=1- (Tr (ABT)-1)/2, 
and then take the orientation that gives the minimal α. Doing this optimization almost duplicated 
the speed of the computation.
Filling the reachability matrix is done in parallel for each generated random end-effector pose. 
The process is completely independent until the reachability matrix has to be written. The 
advantage is that this is a write-only data structure for this part of the algorithm. The pose 
generation process and filling the reachability matrix was implemented in a single CUDA kernel 
of size 1024 x 1024 (blocks per grid, and threads per block respectively). It gives a total of 
1048576 threads, each one with a different random end-efector pose. This are not enough poses 
to make sure each voxel was visited the right amount of times, so we have to execute the kernel 
NB times, where NB [  NsNr]. There is a linear complexity in regards to the amount of voxels 
and Ns, but a quadratic complexity in regards to Nr.
The last step is to calculate the capability map from the reachability matrix. This is done by 
calculating the sum of each row of the reachability matrix. The parallelization of this step is trivial, 
and it was implemented in a separate kernel.
Once the summation is done there is a score for each voxel. The scores are then and converted 
into the colour scale (red for 0 and blue for 1).

Results
We ran our system in a GeForce GTX 1060 with 1280 CUDA cores and 6GB of dedicated video 
memory. It was implemented with the CUDA framework using the numba just in time compiler 
for Python3.8. The experiments consisted of generating capability maps with different Nc, Ns and  
Nr values, for the KUKA LWR 4+ robotic arm.
The first results that should be discussed is how the capability map can change while the 
robot is executing manipulation tasks. Figure 2a shows the capability map of the KUKA LWR 
4+ robotic arm if the fourth joint (commonly known as elbow) gets locked at 0o, it is different to 
the normal capability map presented in figure 1b. Because there is no elbow, the workspace is 
limited to a hollow shape, almost like the outer layer of the normal capability map. It is clear that 
if a joint has to be locked the normal capability map must not be used anymore and the robot 
is required to calculate the new capability map. Figure 2b shows the capability map of the arm 
if a 30cm tool is attached to the end of the arm, not only the capability map grows in size, but 
the distribution of high capability regions changes completely. This shows why it is important to 
generate a new capability map when a new tool is being used. In both cases the capability map 
must be generated fast so that the robot can continue executing tasks.
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(a) 4th joint (the elbow) is locked at 0 (b) 30cm tool attached at the end of the arm

Figure 2. Capability maps of the KUKA LWR 4+ in different kinematic configurations

Although the main objective is to give robots the capacity to quickly generate capability maps 
during task execution the GPU approach could also be used to generate detailed maps with 
very high resolution. For this end, it is necessary to analyze how the system behaves as the 
resolution grows. In figures 3a, 3b and 3c we show how the execution time behaves as the voxel 
count ( ), Ns and Nr grow. This graphs were generated by leaving the other two parameters 
constant at Nc= 50, Ns = 50, and Nr = 10. The first two show a linear behaviour while the last 
one shows a quadratic behaviour as predicted in section 3. The main limitation that is not letting 
the capability map grow is memory. The reachability matrix has to be stored in GPU memory 
so that the algorithm can run fast, then the upper bound is the GPU memory, which in our case 
was 6GB.
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Figure 3. Behaviour of execution time against different workspace subdivision parameters

Finally, our system should be compared to other implementations of capability maps generators. 
Most literature is focused on using capability maps, but not in generating them. From the papers 
that discuss the problem of generating them, the authors in [9] explained optimization strategies 
for generating this structures. They offered the fastest generation times that we could find in 
the literature, but they were running on CPUs. As we show in table 1 we were able to generate 
capability maps around 50 times faster once the algorithm was implemented for GPU. We offer 
a comparison to all the resolution configurations that produce a reachability matrix that fits in our 
GPU’s memory, but in all cases our implementation was considerably faster.
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Conclusions and future work
We presented a method for fast generation of capability maps that could be used in situations 
were the robot needs to calculate them because of changes in the kinematic configuration of 
its arms. This could be due to damages in a joint that forces it to get locked in-place, or if the 
robot takes an unknown tool that changes its distribution of dexterity in space. We were able to 
generate capability maps around 50 times faster than previous implementations which reduced 
the generation time from the order of minutes to the order of seconds.

Table 1. Comparison between a previous implementation and ours.

Nc Ns Nr Previous Ours Speed-up
32 50

100

200

10

20

300

49.8

199.8

552.6

1.07

3.86

12.02

46.54

51.76

45.97
47 50

100

200

10

20

300

139.8

615.6

1734.6

2.71

10.88

36.19

51.59

56.58

47.65
94 50 100 1264.8 20.47 61.78

This speed increment was achieved because the algorithm was implemented for the GPU 
instead of the CPU, which is better suited for data parallel problems. Now that vision algorithms 
are increasingly complex, GPUs are becoming more common in robotic platforms. This enables 
roboticists to add more algorithms that depend on this hardware like the one presented in this 
paper. One drawback is that while the capability map is being generated the GPU is utilized at 
100% for most of the generation process, so complex vision processes would not be able to run 
for that period of time.
The biggest limitation is memory. The reachability matrix consumes a lot of space as the 
resolution (Ns, Nc and Nr) increases. Because the end-effector poses are generated at random 
from a uniform distribution at the joint-space, it is necessary to have the entire matrix loaded 
in GPU memory. One part of the future work is to find ways for allowing the reachability matrix 
grow in a way that performance doesn’t get too negatively impacted but better resolutions are 
also possible.
This project is part of our efforts of building a humanoid robot to assist people (see figure 1a) in 
real-life scenarios. So, another next step is to incorporate this project into a our Humanoid robot 
cognitive system. This would allow us to test how fast generation of capability maps augment 
the manipulation capabilities of the robot by enabling it to generate new capability maps “on the 
fly” for the tools it uses.
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