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Abstract
Often we encounter high dimensional differential equations. A clever representation of a 
generalized solution could be procured in certain cases using Green functions. We show how 
this representation could be achieved and via a clever Fourier mode decomposition for the 
particular disc case resulting in a highly correlated set of functions that transforming into a 
discrete representation – via a classical second order finite difference approximation – can be 
ultimately represented as a linear equation for matrices embedding all boundary conditions in 
the structure of such objects. The resulting problem could be solved using stochastic gradient 
descent with an additional on-the-fly optimization reducing required computation resources 
substantially.

Resumen
Comúnmente encontramos ecuaciones diferenciales en espacios de alta dimensionalidad. Una 
representación útil de la solución generalizada puede ser expresada en ciertos casos usando 
funciones de Green. Se muestra como esta representación se puede lograr por medio de una 
descomposición en modos de Fourier para el caso particular de un disco dando origen a 
un conjunto altamente correlacionado de funciones que transformando a una representación 
discreta – a través de una típica aproximación de segundo grado por métodos finitos – puede 
ser representado como una ecuación lineal para matrices que contienen las condiciones 
iniciales de tales objetos. El problema resultante se puede resolver por medio del método de 
Gradient Descent estocástico cuyos componentes se calculan sobre la marcha para optimizar 
el uso de recursos computacionales.

Introduction
We often encounter ourselves solving complex multidimensional second order differential 
equations. A clever artifact for this purpose is the known Green function construction that has 
been employed in a cornucopia of areas in Physics throughout history. This scenario is clearly 
seen in Quantum and Statistical Physics [1–8].
From a mathematical point of view, the Green function problem can be conveniently defined via 
a differential operator also known as the Liouville operator as follows

acting on a scalar field  in , with d the dimension of the system – i.e. .
In particular, our aim is to tackle the two dimensional case to allow a reduction in dimensionality 
using a Fourier expansion. Two dimensional systems are of great interest in material 
sciences, quantum computing, experimental and high energy physics, ionic fluids, theoretical 
mathematics, and many others. Numerical methods have been described to compute Green’s 
functions, however, due to its increased complexity some remarkable efforts have been made for 
establishing a precise formulation of boundary conditions for their numerical calculation [9] and, 
more interestingly, for elaborating solutions in periodic systems in similar work by [10].
The key for introducing Green’s function – or more accurately, distribution – formalism is writing 
the overall problem as the in-homogeneous equation



Tecnología en marcha, Edición especial 2020
6th Latin America High Performance Computing Conference (CARLA) 68

with  and  two scalar functions. It is proven that existence of Green’s distribution relies 
on the likewise existence of a weight function introduced to guarantee symmetrical convolution 
in Hilbert’s space  – also known as the space of functions.
The Green function formalism starts from the identity,

with  the  Dirac delta distribution, where the solution to the in--homogeneous 
equation (2) is postulated by the convolution identity from the distribution,

with either Dirichlet or Neumann boundary conditions (b.c).

Fourier modes analysis and reduction
In polar coordinates eq. (3) is given by

           (5)

where  and  are the components of  in the radial and angular directions 
respectively.

The presence of the delta function  suggests an expansion for 

the Green function of the form  for the angular term where a separable 
solution can be procured by symmetry. However, in the most general case, an approximate 
method could be formulated to evaluate the l-modes .

Completeness of the Fourier expansion and a divergence free system (  and  are well behaved 
within the domain), the effective one-dimensional system equation for r yields – multiplying eq. 
(5) by  to avoid a pathological behavior at  –, 

In terms of the functions introduced in eq. (5) we have the relations  
and . Following the same recipe for expansion in Fourier 
representation of both  and  yields in simplified form,

after averaging over  as 
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In terms of the Fourier modes of the original functions   , and  (the modes 

of a function f  are defined, as usually, as  last equation 
takes the form

This last equation represents an infinitely coupled system of differential equations. An exact 
solution for the effective one dimensional system can be found by adding the infinite modes 
of m. However, a numerical calculation of such problem is impractical. We are then forced to 
approximate the result by expanding over a finite number of modes. The rationale behind this 
cutoff is also justified by the limitations of numerical precision in floating point operations. Thus, 
the number of modes to be taken will depend entirely on how fast the functions   , and 

 decay on m. Textbook Fourier analysis shows that whenever a function   is at least 
twice differentiable, its Fourier series converges uniformly to the function and its coefficients 
decay as  [11]. Additional convergence requirements in a numerical platform sets an upper 
bound to the utmost value of  virtue of the first and second order derivatives approximation 
in Finite Elements.

Approximate solution using finite elements

A discretization of the radial variable, for both  and  allows us to find an approximate solution 
to eq. (8) using the three-point-stencil. We now define a step size given by , where N 
is the number of points along the grid. As the Green function for each mode has two degrees of 
freedom (  and ), the Green function for each mode will be represented by an  
matrix, where we locate  and  along the rows and columns of such matrix respectively.

Using a Taylor expansion [12–14] up to second order in  to express the first and second 
derivatives of , eq. (8) can be written as

where , , , ,  and  are matrix elements, which can be written in terms of the 

discretized variable  and the Fourier modes of the functions: , , and  .
As the truncate the maximum number of Fourier l-modes by a value of L, we have a linear system 
(by blocks) of the form

𝐏𝐏("#$%)('$%)×("#$%)('$%) ⋅ 𝐆𝐆("#$%)('$%)×% = 𝐕𝐕("#$%)('$%)×% . 
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More explicitly, the block linear system can be written as 

where the diagonal block matrices Pl l and the off-diagonal block matrices Pl m are   
matrices of the form 

In last expression, BC are elements associated with the boundary conditions chosen (either 
Dirichlet or Neumann). On the other hand, the same notation as in eq. (9) has been used. 
Similarly

Matrix inversion
A solution to the individual modes and hence, to the whole system (which can be found by 
adding the contribution of the different modes) can be found by obtaining the inverse of the full 
matrix P, or, likely, finding G s.th eq. (10). Although well-established numerical algorithms exist, 
such algorithms become unviable for large systems due to limitations on memory resources 
and time constraints. Particularly, these matrices are potentially highly sparse. In addition to, 
approximating via the 3 or 5 point stencil reflects an underlying structure of these matrices that 
suggests that an alternate solution method could be orchestrated.
An alternate method to find the required solution is an optimization scheme by means of the 
gradient descent method – and its faster sibling the stochastic gradient descent [15–17]. While 
this method does not directly find the inverse of the matrix P, it attempts to find the solution for 
the matrix G directly by the minimization of a cost function, usually the mean square error,

where V(i) is an anzats satisfying the relation P · G(i)=V(i). Notice that by starting from an educated 
guess of G(i) we obtain a very crude estimate of V(i) distant from the expected V measured by 
the cost function J. Since the profile is quadratic, we can potentially improve G(i) iteratively by 
making multiple fractional updates in the opposite direction of the gradient to the hyper-surface 

profile for the cost function. The update is given by . While this method 
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is guaranteed to converge – provided that the resulting matrix is invertible – it may require a 
significant number of updates, thus undermining its efficiency. For that matter, scientists often 
resource to Stochastic Gradient Descent to accelerate convergence. However, it is well known 
that high accuracy is not an outstanding trait of it. Lately, research on variations of the Stochastic 
Gradient Descent methods for higher accuracy have been developed which can be utilized in 
place such as variations of Kaczmarz’s algorithm for solving systems of linear equations among 
others [17–19].

Results
In order to test the validity of the method, we will show a particular example in which the 
analytical solution to a second order differential equation is known. Let us suppose that we want 
to find the Green function associated with the Helmhotz equation             

We will use units such that  and confine the system in a large disk of radius . Since 
the system can be solved by separation of variables and so the modes do not couple to each 

other . Additionally, , , , 

and . The analytical solution to eq. (14) with Dirichlet boundary conditions is

   

where  and  represent the smaller an the larger radii between  and  respectively and  
and  are the modified Bessel function of first and second kind. In the case in which  
the numerical and analytical solutions are shown in figure 1. The average mean square error 

, representing the accuracy of the numerical solution is shown in table 1.

Figure 1: Left: numerical solution to eq. (14). Right: analytical solution provided by eq. (15). In each plot from left 
to right: , , , and . In both cases we took a maximum number of  
modes; some other important parameters are shown in the plots. The parameters ∈ and  are necessary values 
introduced to avoid divergences, as the Green function diverges as a consequence of the Dirac Delta distribution.
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Table 1. Mean square error associated with the numerical solution shown in figure 1.  represents the 
maximum error and  the value of  at which it occurs. As expected, the maximum error takes place at the 

location of the peaks. While the height of the peaks is formally infinite, the cutoffs ∈ and  are introduced to avoid 
such divergences.

0.000 1.44 x 10-7 8.69 x 10 -5 0.000

0.391 9.26 x 10-7 8.58 x 10 -4 0.391

2.930 2.21 x 10 -10 7.74 x 10 -8 2.930

6.836 6.11 x 10 -9 7.33 x 10 -7 6.836

Conclusions
We synthesized a prescription for finding solutions to the general Green functions formalism 
problem in two dimensions by using the well-known Fourier expansion arriving to a set of infinite 
countable coupled differential equations. In the process of describing solutions to G, we conceded 
in finding an alternate solution to an optimization problem where existence is guaranteed when 
we scale up to the structural properties of the Liouville operator. Ergo, a solution could always 
be found. Ultimately, this problem is paramount in an arena where the evolution of technology is 
highly dependent on the behavior and dynamics of two dimensional systems in material science.
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