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Abstract
Deep learning applications have become a valuable tool to solve complex problems in many 
critical areas. It is important to provide reliability on the outputs of those applications, even if 
failures occur during execution. In this paper, we present a reliability evaluation of three deep 
learning models. We use an ImageNet dataset and a homebrew fault injector to make all the 
tests. The results show there is a difference in failure sensitivity among the models. Also, there 
are models that despite an increase in the failure rate can keep the resulting error values low.
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Resumen
Los modelos de Aprendizaje Profundo se han convertido en una valiosa herramienta para 
resolver problemas complejos en muchas áreas críticas. Es importante proveer confiabilidad en 
las salidas de la ejecución de estos modelos, aún si se producen fallos durante la ejecución. 
En este artículo presentamos la evaluación de la confiabilidad de tres modelos de aprendizaje 
profundo. Usamos un conjunto de datos de ImageNet y desarrollamos un inyector de fallos para 
realizar las pruebas. Los resultados muestran que entre los modelos hay una diferencia en la 
sensibilidad a los fallos. Además, hay modelos que a pesar del incremento en la tasa de fallos 
pueden mantener bajos los valores de error. 

Introduction
Machine learning (ML) has become a growing research area and it has applications from 
financial services to image recognition. Much of this growth has been fueled by the rise of deep 
neural networks (DNN). DNNs automatically learn based on a training dataset to recognize 
patterns to classify objects like images or audio signals.  With the increase of interest in DNNs 
many deep learning (DL) frameworks have been developed (TensorFlow, Pytorch, MXNet, 
DeepLearning4j and Keras) to facilitate the development and implementation of DNNs. It is 
crucial to provide reliability to the outputs of DNNs to ensure the accuracy and correctness of 
the results, even if there are failures in the execution of the model. Therefore, there is a growing 
need in understanding the resilience of DNN models to analyze how they are affected by failures. 
The goals of this evaluation are: i) to analyze the behavior of real DNN models in the presence of 
failures and ii) provide results that can be used by designers or developers to improve the fault 
tolerance mechanisms of their models. 

Methodology
In this paper, we present the evaluation of the resilience of three pretrained DNN models. Two 
of them are convolutional neural networks (CNN) and one is a residual neural network (RNN). 
These models were implemented in Python using the Pytorch framework, since Pytorch tensors 
can be used and manipulated like NumPy arrays and therefore more amenable to our research 
purposes. Also, Pytorch provides the possibility of implementing pretrained models with the 
ImageNet dataset. 
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Failure Injection

To test the resilience of DNN models, we developed a program capable to inject failures into 
a DNN model. There are many applications or APIs to perform fault injection (FI) [1][2][3] in 
programs, but these are not specifically designed to perform the FI in DNN models. Nevertheless, 
there are other studies that have developed and implemented FI mechanisms to understand the 
relationship between fault rate and model accuracy, and to test the resilience of DNN models [4]
[5][6][7]. Our work differs from these papers due to the fact that we focus on the development 
of experiments with different failure rates and types of perturbations using our failure injection 
program. Also, we perform the evaluation using a modern and popular deep learning framework, 
a different image dataset and different deep learning models to those presented in the literature.

The fault injector was developed to inject failures into the weights of the layers of a model. We 
get the layers of the DNN to manipulate later the tensors that they contain. To determine where 
to perform the injection, the program randomly selects the layers and the weights. The fault 
injector uses three parameters to perform the injection: i) model in which the failures are injected, 
ii) failure rate, is the factor to get the total number of failures to be injected, iii) perturbation type, 
which is the type of failure to be injected.

The fault injector determines the number of layers of each model. For each layer there was an 
extraction of a tensor that contains all the pretrained weights. Also, it is necessary to extract the 
shape of the layer to determine the size of its components (number of output channels and the 
number of filters with its weight and height). With the size, we can determine in which item to 
perform the injection and we can calculate the total amount of weights of a model to apply the 
failure rate factor. 

Parameters of the experiment

We implemented the failure injection in three DNN models: VGG19, RESNET50, and InceptionV3. 
These models were pretrained with the ImageNet dataset. We used two factors in the experiment 
to change the behavior of the fault injector: i) The failure rate factor (frate). We used three different 
frates 0.00001, 0.00003 and 0.00005 to determine the number of failures to be injected based 
on the total weights of a model. These frates were selected based on a previous experiment, 
in which we tested the sensibility of a model with different failure injections. ii) The perturbation 
factor, which may be either all values set to zero or all values set to random values.

Experiment execution

ImageNet dataset was used with 1,000 different images to perform each experiment and 
replicas. We executed 21 experiments, 3 without failures (1 experiment per model) and 18 
experiments with failure injection in a different factors combination (3 models times 3 frates times 
2 perturbations).  For each of the 18 experiments, we performed 10 replicas. 

Results Analysis

To analyze the results of the experiments we used descriptive statistics and a bit of analysis of 
variance (ANOVA). Descriptive statistics help us to determine the dispersion and the symmetry 
of the results (error data) and to find outliers that could perturb the analysis. The analysis of 
variance provides us with a statistical test of whether two or more population means are equal 
to determine differences among the models regarding its failure resilience.   
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Experimental results
After the experiment execution, we got 183 mean error values (3 from model execution without 
failure and 180 from replicas). Figure 1 shows the behavior of the three models without failure 
and with three different frates values. Note that in all cases InceptionV3 has the lowest error 
value, showing that is the model with the highest classification error on average. Also, we can 
see that the models were susceptible to the increment of the frate and only the InceptionV3 
model kept the error stable with frates 0.00003 and 0.00005. Note, that the InceptionV3 model 
is not affected in the same way by the frate as with the other two models. Also, we can see that 
the VGG19 and ResNet50 models are very similar. These two models have a similar behavior 
regarding the increase in failures.

 
Figure 1. Model sensitivity to failures 

We also analyzed the mean error of the replicas per each model and frate. Figure 2 shows that 
the VGG19 model has the lowest dispersion. The mean error values of VGG19 in all replicas 
were similar, unlike the ReNet50 and InceptionV3 that show high dispersion, especially with the 
frate 0.0003. The low dispersion in VGG19 shows that the mean error results of each replica 
did not differ significantly. Also, note that in with frate=0000.1 there is a negative skew in the 
interquartile range (IQR) and the minimum and maximum are similar, showing that the failure 
injection with a frate=0.00001 did not significantly impact in the classification process of all 
models. The InceptionV3 model shows a positive skew with the frates 0.00003 and 0.00004. 
Despite the InceptionV3 has the lowest error, it shows that the results with the FI can significantly 
vary between them. 
Figure 3 shows standard deviation ranges that are part of the test for equality of variances. We 
can see that the frate intervals overlap on each model. That is an indicator that the standard 
deviation of the results in the three models was not significantly different. Also, we determine that 
there is equality of variances among the three frates of the ResNet50 and InceptionV3 models. 
The test for VGG19 determines that there was a statistically significant difference to accept the 
null hypothesis (all the variances are equal) due that the p-value < 0.05. Based on the former 
premise, we can conclude that the ResNet50 and Inception Models have a similar behavior 
through different FI rates. 
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Figure 2. Model reliability according to frates

 
Figure 3. Standard deviation ranges

Final remarks
The experiments provide a useful review of the behavior of three real DNN models under three 
different failure injection rates. The use of descriptive statistics and the analysis of variance helps 
us to analyze the results, which can be used to deeply analyze why the deep learning models 
are affected differently in the presence of failures. Also, the statistical analysis could help other 
researchers develop methods and techniques to improve the resilience of deep learning models.  

We conclude that the models were susceptible to the increase of failures in the classification 
process and there are models that despite the failures increase can keep the resulting error 
values low. We plan on extending the current analysis, expanding the statistical analysis with 
implementing more complex experiments. Also, it is important to analyze other scenarios, 
increasing the number of models, types of perturbations and the number of replicas.
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