
Development of a flight
software framework for student
CubeSat missions
Olman D. Quiros-Jimenez1, Duncan d’Hemecourt2

Quiros-Jimenez, O; d’Hemecourt, D. Development of a flight
software framework for student CubeSat missions. Tecno-
logía en Marcha. Edición especial. Movilidad Estudiantil 6,
2019. Pág 180-197.

 https://doi.org/10.18845/tm.v32i8.4992

1	 Costa Rica Institute of Technology. School of Computer Engineering. Email:
olmanqj@gmail.com

2	 George Washington University. School of Engineering and Applied Science.
Email: ddhemecourt@gwu.edu

181
Tecnología en marcha, Edición especial

Movilidad Estudiantil 6, 2019

Keywords

Satellite mission; software stack; framework; CubeSats.

Abstract

During 2018 a student CubeSat project was developed at George Washington University (GWU)
for the first time. The small satellite mission implemented a software stack with the hope of
creating a simple and lightweight framework for future academic CubeSats. The developed
flight software consisted of a collection of fundamental services and an application layer, which
was executed above the Network Layer and the Operating System. Accompanying ground
station software was also developed for the mission. This paper presents the resulting software
framework, its architecture, features, software quality attributes, and the decisions made during
the design and implementation. The paper will address and compare other available open
source software frameworks for CubeSat missions and will propose a general architecture for
any CubeSat mission at an introductory level. This generic framework will define the minimum
features and standards to obtain a flexible, portable and reusable software library. The paper will
provide students without previous CubeSat experience some initial information and examples to
start the development of a CubeSat flight software.

Introduction

In recent years the academic community has experiment an important increment on the number
of developed space missions. During the year 2011 at least 10 satellites were launched by
universities, for the year 2017 this number increased to 55, and each year this number grows
[1]. This is due to several reasons, one for example is thestandardization of small satellites that
lead to a important reduction on prices of components and launch services, another reason is
the importance of actual space missions for education. It is already well known, that a satellite
mission involves big efforts on many fields, particularly engineering [2].Therefore letting university
students to develop satellites, will provide them hands-on experience with an aerospace project
and real-world systems engineering. In many occasions,satellites build by universities are
student satellite missions,this means students of different levels and fields carry out the design,
integration, testing and operation phase of the spacecraft. At the same time, this generally
implies, that the mission is performed by non experienced personnel, which can conduct to
delays on the design and integration phase, and also to failures during the operation in space.
The software component of satellites is not exempt of suffering this issues. To address this, the
paper attempts to give university students without previous experience, an initial reference when
it comes to design and implement the flight software for CubeSats.

A. Paper Organization

First of all, as background, some basic concepts will be given, which must be taken into
account for developing any small satellite, and its flight software. Then some available Software
Frameworks for small satellites will be exposedand compared; capabilities, features, modularity,
portability, documentation, learning curve and licensing are factors of interest. The examined
open source frameworks are: NASAs core Flight System (cFS) [3], KubOS flight software [4] and
CubedOS from Vermont Technical College [5]. Based on the two initial sections, a generic flight
software framework will be proposed, with the intention of building flexible, portable and reusable
flight softwares for most student satellite missions. The architecture, features, software quality
attributes, and the decisions taken during the design phase of the framework are presented.
After this, a section presents the results of implementing and testing the framework. Lastly, the
paper presents a conclusion and future work

Tecnología en marcha, Edición especial
Movilidad Estudiantil 6, 2019182

Background

The Cube Sat Standard

As mentioned in the introduction, one of the reasons for the increment of university space
mission launches per year is the standardization of small satellites. CubeSat is the name given
to the standard that defines a small satellite with the dimensions of 10 x 10 x 10 cm, for one
unit CubeSat, or 1U, and a total mass of 1 kg. 2U and 3U configurations are also possible, i.e.
CubeSats with the dimension of 10 x 10 x 20 cm with total mass of 2 kg and 10 x 10 x 30 cm with
a total mass of 3 kg respectively [6][7], as illustrated in figure 1.

Satellite Subsystems

As described in the book Space Mission Analysis and Design by Wertz and Larson [9], any
satellite, including CubeSats, should incorporate a series of subsystems in order to perform
correctly. For the intention of this paper,the subsystem of interest is the the Command and Data
Handling Subsystem (CDHS). This, alongside the Mechanical Subsystem, the Electric Power
Subsystem (EPS), the Attitude Determination and Control Subsystem (ADCS),and the Thermal
Subsystem, conform the satellite Bus, in other words, the platform that support the satellite itself
and the Payload. Figure 2 illustrates a typical CubeSat Subsystems organization. Next, a short
description of each subsystem of interest is given.

Figure 1. 3U, 2U and 1U CubeSats. Isometric CAD drawings of 3U, 2U and 1U CubeSats
respectively (based on ISIS structure and GomSpace Gom-X platform). [8]

•	 Mechanical Subsystem: is the solid structure than hold together all the subsystems, it provides
the frame to arrange all parts, even during extreme conditions, for example during launch
and deploy. Also provides the way to attach the spacecraft to the launch vehicle [9]. In the
case of CubeSats the shape and requirements for the structure are already defined,and can
be found in [7].

•	 Electrical Power System (EPS): is in charge of providing all the electric dependent components
of the satellite with the power they need during the lifetime ofthe mission. Also provides a way
to store, monitor, control, and in most cases, to generate, electrical power [9]. For CubeSats,
the EPS requirements are also delimited, due to spatial and safety constraints [7]. In most
cases a CubeSat EPS is conformed by solar cells, batteries, distribution connections and a
control board.

183
Tecnología en marcha, Edición especial

Movilidad Estudiantil 6, 2019

•	 Attitude Determination and Control Subsystem (ADCS): is capable of determining the attitude
and orientation of the spacecraft using sensors, but also of changing it, as needed, with
actuators. This system capable of stabilizing and orienting the spacecraft in the desired
direction, based on the requirementsof the antennas or/and the payload. There are many
techniques to achieve this, some passive ones, taking advantage of aerodynamics and
the gravitational field, and other active ones, making use of actuators, such as magnetic
torquers, reaction wheels and propulsive systems [9]. Most CubeSats mission make use ofthe
two first mentioned actuators, due to spatial and safety constraints.

•	 Command and Data Handling Subsystem (CDHS): is in charge of a fundamental task, provide
the data link between the spacecraft and the ground segment, inorder to operate and monitor
the satellite. Is capable of transmitting data with the state and health of all subsystems, also
called telemetry data. Also is capable of receiving, interpreting and executing commands,
addressed to any subsystem. The CDHS can be considered as the interface between
the ground stations and all satellite’s subsystems, but also as the brain of the spacecraft
[10]. This subsystem is composed of various devices, i.e. the On Board Computer, the
Communications System and the Data Bus. A further description of this components will be
presented in the following sections.

•	 Payload: the payload is unique for each mission, and is the reason to be of the spacecraft.
The payload can be composed by any hardware and/or software, capable of interacting
with the outside world. Actual examples of this element is a camera for earth observation, a
radiometer or even a communication system in the case of telecommunication satellites. All
the previously presented subsystems have one fundamental purpose, to keep the payload
safe and operational during the lifetime of the mission [9]. Note that satellites may incorporate
more than one payload.

Figure 2. Block Diagram of typical CubeSat Subsystems Organization.
The Subsystems on the left side of the dotted line along side the structure

conform the Satellite Bus, on the right side the Payload Segment.

On BoardComputer

As part of the CDHS, the on-board computer (OBC) will safely ensure the procedural operations
of the overall satellite. It is essential to form a communication link between the central flight
computer and all other satellite subsystems. Utilizing the capability of a real-time operating
system, the OBC can properly schedule and prioritize tasks across the entire satellite. When
selecting the processor for the OBC of a CubeSat mission, it is important to consider the speed,
instruction set size, and memory capabilities.

Tecnología en marcha, Edición especial
Movilidad Estudiantil 6, 2019184

One must review the rates at which satellite tasks must be executed and the size of the data
being transferred from different subsystems. For example, if a CubeSat designer plans to store
images on the OBC, there will likely need to be an external memory chip to handle the larger
data sets required of images. The most computationally complex tasks being executed on the
OBC must be reviewed prior to the selection of the flight computer. For example, if the designer
plans to run an ADCS module on the OBC, it is very important to review the computations
required to produce the spatial vector of the satellite (i.e. Kalman filtercomputational complexity).

Alongside these fundamental considerations, the designer must also take into account the
available pulse-width mod- ulation (PWM), number of analog-to-digital converters, and available
connection interfaces of different flight computers. Depending on the requirements of the
satellite, certain flight computers may be lacking the physical connections needed to achieve
missionsuccess.

Figure 3. Example of OBC for CubeSats, the CubeComputer from Cube-
Space. This model fulfill the CubeSat dimensions [27].

Data Bus

The way that the OBC and other subsystems communicate, is through the Data Bus. This
term refers to all the hardware, (i.e. wires, pins, plugs, etc.) and the software protocols, that
allows communication between various devices. There can be many Data Buses with different
protocols inside the same system. Some of the most used protocols for CubeSats Data Buses
are Inter-Integrated Circuit (I2C), Serial Peripheral Interface (SPI), Universal Asynchronous
Receiver Transmitter (UART) and Controller Area Network (CAN) [12]. For choosing a Data Bus
for an specific application is important to take into account the communication type, data rate,
hardware requirement and the amount of devices to be connected to the same Bus (scalability).
A summary of each protocol, and its attributes, can be found in table 1.

Communications System

The communication system of the CubeSat is primarily responsible for sending data and
receiving commands from the ground station. Sometimes the communication system also
acts as a repeater for other satellites in space. This subsystem must generally be able to filter,
amplify, and demodulate incoming signals and must be able to modulate and transmit outgoing
signals. Additionally, the communication subsystem needs to be able to interface the incoming
and outgoing data to the on-board computer. This interface is often achieved through a serial
connection such as UART, I2C, or SPI. One of the most essential roles of the communication

185
Tecnología en marcha, Edición especial

Movilidad Estudiantil 6, 2019

system design is to ensure that the CubeSat radio frequency and modulation scheme match
that of the ground station. The specified RF band must be registered with the competent
governmental authorities, to avoid committing violation to regulations.

Table 1. Data Bus Summary

Bus

Name

Type of

communication

#wires

required

Data rate Scalability

I2C Synchronous 2 400 kbit/s High

(multiple
devices)

SPI Synchronous 4 20 Mbit/s High

(multiple
devices)

UART Asynchronous 2 460 kbit/s Low

(point-to-point)
CAN Asynchronous 2 1 Mbit/s High

(multiple devices)

Flight Software

The flight software refers to the specific software which is executed by the OBC during the
lifetime of the mission, in other words, the flight software controls the CDHS, and at the same time
controls the spacecraft. This software is different and unique for each spacecraft, because each
mission has different goals and requirements, usually it is a very complex system,that involves
many functionalities and interfaces.

There is not a rigorous way to design and implement the flight software, and this process requires
important efforts and resources which need to be considered by project managers. Although the
existing heritage from past missions, sometimes the flight software is written from scratch [13]. To
address this issue some organizations have developed software frameworks with the intention of
decreasing the time and resources needed to implement the flight software, but also for ensuring
basic functionalities, standards and safety measures, along multiplemissions.

In the case of student satellite projects, the effort required by the team is bigger, because
of the lack of experience. Most design practice and experience that exist in all major space
organizations, such as NASA and ESA, is not available to student teams [13]. The rest of this
paper will try to address this issue, by providing resources for implementing the flight software.

Available Open Source Flight Software Frameworks

Most CubeSats student teams develop the Flight Software having in mind a specific hardware
and mission. So for following missions the software needs to be re-factorized or completely
rewritten. An approach to avoid this issue, and in general to improve the overall software quality
and reduce production time and cost, is to use a framework. According to Pree [14] a software
framework can be defined as a generic application that can be tailored for various specific
applications. A software framework is composed by a set of software modules that follows a
specific architecture. The idea with this is to take advantage of software re-usability, so that
programmers just need to write the application-specific code to end with a functional application.

Tecnología en marcha, Edición especial
Movilidad Estudiantil 6, 2019186

There are a few available frameworks for building flight software for satellites, only open source
frameworks will be presented in the following sections, three were identified during research.

NASA’s cFS

The NASA Core Flight System (cFS) software framework delivers a series of established software
applications to operate on-board space flight computer systems. The Core Flight Executive
(cFE), within the cFS, provides software developers a set of reusable services tailored to the
fundamental functions required of satellite system management. The software environment
enables a high-level modular approach to flight computer implementation [26].

NASA cFS aids developers in the enhancement of code re-usability and the reduction in
source lines of code. As opposed to what is commonly known as ”bare metal” programming,
in which the flight software applications are built from the ground up, the cFS advertises rapid
development. The cFE within the cFS framework provides many of the fundamental code services
required of an on-board flight software system, such as timing and event handling, and software
bus maintenance. Application Programming Interfaces (APIs) are also provided for flight-specific
applications such as file management and system safety checking [26].

The framework adheres to a publish-subscribe software pattern, in which all cFS applications
subscribe to specific cFE services at run-time. This pattern enables a simplified software
development process in which applications can be easily added and removed from the software
bus. Additionally, the cFE has a configurable set of requirements that can be run on multiple
platforms, including a Linux desktop computer. This is essential for testing purposes, as it
provides the software development team the ability tobuild and run applications on a desktop
with the understanding that the application will be able to run identically on the flight hardware
[26].

cFS uses a layered architecture, internals of a layer can be changed, without affecting other
layers, this enables the framework to run on multiple operating systems without modification [25].
The architecture of this framework can be better appreciated in figure4.

KubOS

As stated by the KubOS Documentation [4], it consist of an open source platform that provides
satellite developers with the tools and libraries necessary to quickly bring up space-ready
software. Developed by the Kubos Corporation, the framework is designed to take care of
every aspect of the satellites flight software, so that users only have to write the so called
Mission Applications, which govern the behavior of the mission. The Kubos platform consist
of a Software development kit (SDK),this means it provides all tools required for building the
applications. The central component of the KubOS framework architecture is the KubOS Linux
operating system, which consist of a custom Linux distribution created to host the mission
applications. Over the operating system, resides the Kubos APIs, which simplify the process of
writing mission applications and services. It includes software abstractions for communication
protocols and hardware devices. The framework also offer a collection of services, to allow the
user to accomplish typical flight software tasks such as telemetry storage, file management,
shell access, and hardware interaction. The overlying layer of the architecture are the mission
applications, which are anything that governs the behavior of the satellite, this are developed by
the users and can be written in Python or Rust programming languages [4]. The architecture
of this framework can be better appreciated in figure5.

187
Tecnología en marcha, Edición especial

Movilidad Estudiantil 6, 2019

Figure 4. Architecture of NASA’s cFS framework [28].

Figure 5. Architecture of KubOS framework. Everything in blue is typically
developed by Kubos, while everything in green would be mission code,

written by the user for their specific mission and payload. [4].

CubedOS

CubedOS was developed by the CubeSat Laboratory from the Vermont Technical College. The
main goal of the framework is to providing a robust software platform for CubeSat missions and
to easing the development of CubeSat fight software. Unlike the two previous studied platforms,
CubedOS is written in SPARK/Ada, this allow the formal verification of critical sections to be free
of the possibility of run-time error[15].

The framework offers an operation environment, which hosts modules and provide inter-module
communication based on the publisher-subscriber model, but also provides modules with useful
functionalities. The framework is completely modular, this allows modules to be plugged or
unplugged as the mission requirements dictate. CubedOS architecture is described in figure
6, where the CubedOS environment, represented by an array of solid circles, provides the
communication infrastructure, for the functional modules, represented by the circles labeled as
T1 through T4 [15].

CubedOS is not dependent of an operating system, applications can be executed directly
on bare hardware. Although for more complex applications that require an operating system,
CubedOS can be executed on top of Linux or VxWorks [15]. Depending on the mission
requirements this can represent a limitation, because Linux is not a real-time operating system
and VxWorks is proprietary software.

Tecnología en marcha, Edición especial
Movilidad Estudiantil 6, 2019188

Figure 6. CubedOS-based Architecture [15].

Comparison

The three frameworks studied in the previous section share many features and attributes in
common. The three of them offer the fundamental features, and some extra utilities, required to
build the flight software for satellite missions. In table 2 the components and functional features
of each framework are enlisted.

The three alternatives focus on modularity, reconfigurability and portability to offer developers
the ability of building applications with specific requirements within a relative short time. Also is
important to present other non-functional features of each framework, this characteristics are
enlisted in table 3.

Clearly, from the three proposals, the more complete and mature one is NASA’s cFS, however
this also brings a considerable learning curve. The memory footprint is not minimal, a typical
configuration of cFS with FreeRTOS has a size around 1 MB [17], this can represent a limitation
for low cost OBC modules, like for example the PPM E1 from Pumpkin INC, which has 256KB
internal Flash memory and 96KB internal RAM[19].

The KubOS framework also offers a wide range of functionalities, and unlike the other tho
alternatives, KubOS allows to write the user application on Python or Rust programming
languages. For achieving this the KubOS platform runs above the KubOS-Linux distribution. This
can bring disadvantages, because limits the portability in term of the operating system layer,
increases the memory footprint, a typical KubOS configuration can occupy more than 2.5 MB,
and depending on the mission requirements, the Linux Operating System can fail on providing
real time capabilities. KubOS hardware portability is also limited, applications are portable only
between the official supported COTS boards, the ISIS, Pumpkin and Beaglebone platforms [4].

CubedOS is provably the most innovative of the three frameworks, because offers the capability
for formal verification to be free of some types of run-time error. Also, depending on the mission
requirements, the CubedOS can be executed without an operating system, which reduces the
memory footprint. However, as stated on the web page of the project [20], CubedOS is still a
work in progress, and by the time this paper was written many features are still missing.

Flight Software Framework proposal

Motivation

We aim to propose an open-source software framework that can be easily understood and
implemented by students in future academic CubeSat missions. Many of the current platforms
available are either too complex for a simple embedded system, or provide too much of a
learning curve for students who are new to real-time systems. For example, NASA cFS offers a
highly robust framework, although running it on a micro-controller with limited program memory
is likely unrealizable. Our goal is to provide a simple and easy-to-use software framework that
can be run on standard real-time operating systems.

189
Tecnología en marcha, Edición especial

Movilidad Estudiantil 6, 2019

Philosophies

Before the design and implementation phase of the framework started, some philosophies/
principles were stated in order to guide the team through the development process and help
them take decisions when facing a dilemma.

•	 Focus on simplicity: always keep it simple. Don’t implement something if it is not strictly
necessary.

•	 Better explicit than implicit: never assume a user knows everything,better document each
function and structure, also try not to use acronyms.

•	 Easy to learn and use, even without documentation: an intuitive product is expected, because
the target users are students.

•	 Better static than dynamic: always try to use static allocation rather than dynamic, in order to
avoid potential memory errors.

•	 Better greedy than lazy: if it is not possible to implement with static allocation, use dynamic
allocation only during initialization of the software. Reserve all memory that will be potentially
needed during initialization, never during the normal execution of the mission.

Software qualityattributes

Taking the example of the three software frameworks presented before, some software quality
attributes are desired, in order to overcome the complexity and challenges of space software. In
this work, modularity and portability are the focused goals.

•	 Modularity: this means that each software component is independent from the others, this
allows separate validation of each component, and greatly improves the reconfigurability of
the framework [13].

•	 Portability: Mooney [18] defines a software unit as portable (across a class of environments)
if the cost to transport and adapt it to a new environmen (in the same class) is less than the
cost of redevelopment. For this work, the software unit is the framework, and the portability is
desired across two classes of environments: the Hardware and the Operating System layer.
This means the framework should be easy to port between different hardware platforms, but
also should support different operating systems.

Architecture

The proposed architecture consists of four layers: the operating system, the network layer, the
framework services, and the user-specific software application. At the lowest level, the operating
system will uphold the threading of each task in the framework, also will provide communication
between tasks and resources management. The goal is to provide a universal real-time software
framework.Therefore, the architecture should not be limited to any specific real- time operating
system.

Above the operating system at the next level is the network layer, its main purpose is to establish
a communication link between the spacecraft and the ground segment, therefore ground stations
shall handle the same protocol. To fulfill this requirement the open-source library CubeSat Space
Protocol (CSP) [21], has been choose. A further description will be provided later.

Above the network layer is the main functionality of the proposed framework. The services layer
abstract away from CSP and will provide seven specific modules: housekeeping, parameter
database, timekeeping, data storage, commands handling, debugging and data logger. The
services will be described in the following section. Finally, at the highest level, the user will be
able to define the flight-specific application using the services provided below. The software
framework will clearly lay out a procedural process for the user to make specific calls to the
services provided. The described architecture is illustrated in figure 7.

Tecnología en marcha, Edición especial
Movilidad Estudiantil 6, 2019190

Table 2. Components And Functionalities Of Cfs, Kubos And Cubedos Frameworks
[4][5][15][16][17]

Component/
Functionality

ShortDescription	 cFS KubOS CubedOS

Housekeeping and Fault Tolerance

Telemetry collection Collect telemetry data automatically Yes Yes No info

Telemetry storage Store collected telemetry data Yes Yes No info

Telemetry
transmission

Transmit collected telemetry to ground
segment

Yes Yes No info

Fault management Detect a fault and take an action Yes Yes No info

Watchdog Interface for managewatchdogtimers Yes Yes No info

Commands & Activities

Accept commands Accept and handle commands
fromgroundsegment

Yes Yes Yes

Store commands Store Commands and scheduled execution Yes Yes Yes

Event detection Trigger activities when an specific event
occurs

Yes Yes No info

Activity Scheduler Scheduleson-boardactivities Yes Yes Yes

Time handling

Time management Provide and managespacecrafttime Yes Yes Yes

Communications

Software messages
passing

Message transmission
betweensoftwaremodules

Yes (Publisher-
subscribermodel)

Yes (Implemented
by the OS)

Yes (Publisher-
subscriber model)

Remote
communication

Transfers/receives data to/from the ground Yes Yes Yes

Communication with
subsystems

Interface to transfer/receive data to/
fromthesubsystems

Yes Yes Yes

Data handling

Parameters database Interface for managing parameters, set
andgetvalues

Yes Yes No ifo

File System Interface for managing files Yes Yes Yes

Log collection Collect and store the result of activities (i.e.
commands, events, etc.)

Yes No info Yes

Utilities Checksum, encoding/
decoding,compression, etc.

Yes Yes Yes

Testing & debugging

Debugging support Outputs informationfordebugging Yes Yes No info

Testing support Possible to perform automated testing Yes Yes Yes (Allows for formal
verification)

191
Tecnología en marcha, Edición especial

Movilidad Estudiantil 6, 2019

Table 3. Non-Functional Features Of Cfs, Kubos And Cubedos Frameworks [4][5][15][16][17]

Non-funtional
feature

Description cFS KubOS CubedOS

Maturity How many times has the software
been used in space

Many missions Non Non

Portability Easy to port in terms of operating
system and hardware

Yes (OS and
Hardware abstraction

layer)

Only between
supported

boards

Yes (OS and
Hardware

abstraction layer)

Modularity Modules are completely
independent

Yes Yes Yes

Documentation Coverage of the documentation Extensive Basic Basic

Learning curve How difficult to learn High High (Many
technologies
involved i.e.

Rust, Python, C)

Low (if you know
Spark/Ada)

Memory footprint Memory required Around 1MB with
FreeRTOS

Above 2.5 MB
with Linux

Low (Do not
requires OS)

Licensing Type of License NASA Open Source
Agreement

Apache License
v 2.0

GNU General Public
License

Figure 7. Architecture of proposed framework. Layers in blue are part of the framework,
while layers in green should be provided by the user for the specific mission.

Operating System

The frameworks studied, demonstrates that a real-time operating system is fundamental for
implementing a satellite’s flight software, because this is inherently concurrent, since space
systems comprise large numbers of elements, such as sensors and actuators that operate in
real time, sharing resources, such as memory [13]. As described before, the architecture was
not designed fora specific real-time operating system, hence an abstraction layer is provided (by
CSP), and the software developers are responsible for choosing the operating system. However
the operating system layer shall occupies a minimum amount of memory, due the limitations of
low cost OBC modules, and shall provide the following fundamental features:

•	 Threadcreation

•	 Threadsynchronization

•	 Threadintercommunication

•	 Timemanagement

•	 Memorymanagement

•	 System shutdown and rebootcalls

Tecnología en marcha, Edición especial
Movilidad Estudiantil 6, 2019192

Sometimes is also desired to execute the flight software over non real-time operating systems,
such as Linux, Windows or Mac-OS, on a desktop computer. This is useful when the software
develops need to start writing and testing the mission-specific application, but they do not have
whit the specific hardware for the satellite. This capability is also achievable with the abstraction
layer provided by CSP.

Network Layer

To implement a communication network across the satellite and ground segment, it is essential
to establish a reliable protocol for sending and receiving data.There are a multitude of
communication protocols in existence, although it is important to use a protocol that adheres
to the needs of the satellite while maintaining a small footprint in memory and processing
power. AX.25 is a communication protocol used primarily for radio communication systems.
It is a simple data format universally used across the amateur radio community. Although
its simplicity is advantageous to radio communication links, the protocol does not provide a
framework to implement an on-board embedded system network. AX.25 usually fits into a larger
communication protocol in theon-board satellite network.

Another highly universal communication protocol is TCP/IP, which is usually associated with
Internet. TCP/IPhas been proven to be a robust and reliable tool in establishing computer
networks, although its footprint is likely too large for a CubeSat mission with limited computing
power and memory.

The CubeSat Space Protocol (CSP) was established specifically to meet the needs of CubeSat
missions. The protocol maintains simplicity and a reliable functionality, which is perfectly suited for
establishing an on-board CubeSat net- work. CSP offers a wide range of high level functionalities,
while maintaining a very small memory footprint, as 48 KB of code and less that 1 KB RAM
required [21]. It isessential to use an operating system to which CSP can be ported. CSP can
make all operating system calls (i.e. creating tasks, synchronizing tasks, creating queues, etc.)
without requiring the software developer to invoke operating system-specific language. This
greatly contribute to the portability of the whole framework.

Framework Services

Based on the Table II we can identify the fundamental modules that should be present in a flight
software frame- work in order to be suitable for most satellite missions. As stated before, on of
the main intentions of this work is to develop a simple and intuitive software framework, easy to
learn and use, therefore this proposal tries to achieve asmany functionalities as possible with just
a few general modules. The resulting modules form this analysis are enlisted as follow:

•	 Housekeeping Service: the Housekeeping (HK) Service is in charge of providing the ground
segment with telemetry data about the state and health of the spacecraft, therefore this
service shall be able to automatically collect, store and transmit telemetry data. Storing
telemetry data may be of interest for the mission, if it is required to know the state of the
spacecraft even during the section of the orbit without a communication link withground.

•	 Parameters Service: the Parameter Service acts as a database for the spacecraft’s
parameters, it shall provide an easy way to set and get the value of any parameter. A
parameter can be described as a variable that helps model or describe a system, it can be
for example the pointing direction of the ADCS, or the output voltage of the EPS, or even
if the communication system is on or off. Therefore this service should supportany kind of
value (i.e.: booleans, integer numbers, floating point numbers and strings). Implementing
the mission specific application using the Parameters Service instead of built-in variables
from platform facilitates the control and monitoring of the spacecraft, because any parameter
value can be modified or retrieved at anytime.

193
Tecnología en marcha, Edición especial

Movilidad Estudiantil 6, 2019

•	 Commands Service: the Command Service is in charge of providing the ground segment
with the ability of controlling the spacecraft at any time. This module shall be able to
accept and execute commands coming from ground in real-time. Usually commands arrive
encoded inside packages form the Network layer, therefore this module shall be capable
of decoding an interpreting the content of a command package. For this work the specific
action performed by a command will be called command routine. The amount of command
routines needed and the actions performed by each command routine are specify of the
mission and shall be implemented by the user. Normally, the ground segment expects a
result for each command sent to the spacecraft, therefore this service shall be capable of
capturing the result from any command routine and sending it back toground. Depending
on the mission requirements, storing commands is also necessary, this provides the ability to
execute commands, even during the section of the orbit without a communication link with
ground. For this the command packages shall also specify when to execute the command
routine, this can be specified with a eventual condition, for example when the time reach
a certain value, or when the GPS coordinates are between a certain range, or even when
the battery charge drops under a certain threshold. Some flight softwares treat time-based
conditions separated from other event conditions, for simplicity this proposal will treat time-
based conditions as any event condition.

•	 Time Service: the Time Service provides an interface for managing the time on-board the
satellite. This module shall be capable of providing with the actualtime-stamp to the software
units that requires this. Time-stamps can be the mission elapsed time or the actual ground
time. For the second type, this service shall provide a routine to synchronize the time-stamp
with ground. This service shall also provide an interface for interacting with watchdog timers.
Watchdog timers are electronic timers which are reseted within a specific period of time, if at
any given moment the period elapses and the timer is not reseted, it means that an exception
has occurred, so the watchdog triggers a corrective action, usually reboots the affected
subsystem. As with the Storage Service, the calls for interact with the clock and watchdog
timers can differ between platforms. Therefore the underlying implementation shall be given
by theuser.

•	 Storage Service: the Storage service consist of ain- terface for managing files, this shall
provide functions to create, read, update and delete files. Is important to note that the low
level calls to handle files can differ between platforms (hardware/operating system), therefor
this service shall provide an abstraction layer, but the underlying implementation shall be
provided by theuser.

•	 Log Service: sometimes is very desired to store information about the state of the spacecraft,
the result of activities, error occurrences or any other event. The Log service is in charge of
storing this type of data in a file called the log file. When a new record is added to the log file,
it shall include the accurate time-stamp when the event occurred.

•	 Debug Service: the Debug service is a small but important module which allows the mission
developers to monitor and manipulate the flight software during the developing process. It
shall provide functions for printing information and reading commands to and from a debug
console. The actual implementation for this functions may differ between platforms, therefore
this service shall provide an abstraction layer, but the underlying implementation shall be
provided by the user.

Tecnología en marcha, Edición especial
Movilidad Estudiantil 6, 2019194

Implementation of Proposed Framework

For the implementation and testing phase, the GWU CubeSat team make use of the STK600
development system [23] and the AT32UC3C0512C micro-controller [24], both by Microchip
Technology Inc. The 32-bits micro-controller features 512 KB of programmable memory, 68 KB
of RAM memory, and a was configured to run at 16 MHz.

For the operating system layer, FreeRTOS [22] was selected by the team. FreeRTOS is an open-
source real-time operating system, which meets all the requirements stated in section IV-E, and
CSP is already ported to it. This will also be the operating system used by the GWU CubeSat,
and is the recommended option for implementing flight software.

With this configuration the GWU CubeSat team demonstrates a light-weight and functional flight
software framework with the following attributes.

Modularity

The implemented framework demonstrated to be modular, all services from the framework
services layer are independent, and can be used separately. This gives the option to the software
developers to use just some services for the specific application, but also to add other modules.

Portability

The implemented framework demonstrated great portability in terms of the operating system
layer. All operating system calls made by the framework services and the mission-specific
application, use the interface provided by CSP. Therefore the framework can be easily executed
over any of the operating system supported by CSP (i.e. FreeRTOS, Linux, Windows and Mac-
OS). However, ports for other operating system can be easily written.

In terms of the hardware, the framework also demonstrated to be portable, by providing interfaces
for the specific hardware. Interfaces for the file system, clock management and watchdog
timers management are provided by theframework services layer. Interfaces for the memory
management and for shutting down and rebooting the hardware, are provided by CSP. The
underling implementation for specific hardware shall be provided by the software developers.

Real Time Capabilities

The implemented framework demonstrates to provide real-time capabilities, thanks to the real-
time supporting platform conformed by FreeRTOS. This was demonstrated through the testing
phase, where the software was able to respond in real-time to incoming messages with different
requests.

Memory Footprint

The implemented framework demonstrates a very low memory footprint, even lower than the cFS
and Kubos frameworks. For a configuration with FreeRTOS, CSP, the seven proposed services
and a basic application with the specific hardware drivers, the software requires around 76 KB
ROM and 26 KB of RAM. This makes the framework suitable for low-cost commercial OBCs, such
as the previously mentioned, PPM E1 from Pumpkin INC, which has 256KB internal Flash memory
and 96KB internal RAM [19].Figures 8 and 9, show the breakdown of the memory occupied by
the compiled implementation on the AT32UC3C0512C microcontroller, which has 512 KB of ROM
and 68 KB of RAM memory.

195
Tecnología en marcha, Edición especial

Movilidad Estudiantil 6, 2019

Figure 8. AT32UC3C0512C ROM (512 KB) allocation breakdown. Total allocated 15% (76.8 KB).

Figure 9. AT32UC3C0512C RAM (64 KB) allocation breakdown. Total allocated 37.9% (25.79 KB).

From figures 8 and 9 can be noticed, that for both ROM and RAM, CSP represents the biggest
partition. This may be due the extensive amount of functionalities that the library offers, but
also because of the memory space which has to be allocated for storing the incoming and
outgoing CSP packets. For both ROM and RAM, the proposed framework services represents
the second biggest partition, this may be because of the tables which are allocated by the
Parameters and Commands Services. FreeRTOS and the Application requires similar amount
of space for both RAM and ROM, this demonstrates the very low footprint of FreeRTOS kernel,
which makes it highly suitable for CubeSat missions. The Application segments on the pie charts
also contemplate the hardware support packages, which differs for each platform, this may be
the reason for the Application to require more RAM than the FreeRTOSkernel.

Documentation

Each module of the framework services offer a documented API, with a description of the
module’s general functionality, and a description for each structure and function of the API.
Some functions and structures descriptions also offer examples of how to use them. The GWU
CubeSat team made sure to document all the software units during the implementation process.
The documentation follows the Doxygen format, so that adocument can be generated.

Conclusions

When the GWU CubeSat team start designing and developing the flight software, the specific
platform and mission application requirements were still unclear. This was one of the

Tecnología en marcha, Edición especial
Movilidad Estudiantil 6, 2019196

main reasons for the team to developing a generic solution. Not for bad, because the team
demonstrates a modular, portable, general-purpose, real-time and open-source platform. The
team hope with this work to provide future missions and other student teams, with a resource to
facilitate the implementation of the flight software.

Current Status & Next Steps

By the time this paper was written, the implementation of the proposed framework was still
in progress, the GWU CubeSat team hopes to include all proposed features and make a first
release by late 2018.

For the current version of the implementation, visit: https://github.com/ olmanqj/sfsf.

Furthermore some next-steps have been identified. A further documentation is desired, with a
user manual and building instructions, a example application is also desired. The team also
hopes to provide the framework with a few more functionalities, for example, a file transfer
protocol would be highly valuable. One of the main disadvantages of this work, compared with
the frameworks studied before, is the lack of fault detection and recovery capabilities. The only
method provided by the proposed framework is the utilization of watchdog timers. Further fault
tolerance features are highly desired in potential future versions.

Acknowledgment

Thanks to the members of The Space System Laboratory (SETEC Lab) at Costa Rica Institute
of Technology, to the members of The GW-CubeSat Lab and The Micropropulsion and
Nanotechnology Laboratory (MpNL) at The George Washington University, for making this work
possible.

References
[1] 	 M. A. Swartwout, ”CubeSat Database,” Google Sites. [On- line]. Available: https://sites.google.com/a/slu.

edu/ swartwout/home/cubesat-database. [Accessed: 17-May- 2018].

[2] 	 M. A. Swartwout, ”CubeSats and Mission Success: 2017 Update”, presented at the 2017 Electronic Technology
Workshop, NASA Elec- tronic Parts and Packaging Program (NEPP), NASA Goddard Space Flight Center, 27
June2017.

[3] 	 NASA, ”core Flight System (cFS),” nasa.gov, 2017. [Online]. Available:https://cfs.gsfc.nasa.gov/.

[4] 	 Kubos Corporation, ”Kubos Documentation,” kubos.co,2017. [Online]. Available: http://docs.kubos.co/1.2.0/
index.html.

[5] 	 C. Brandon and P. Chapin, ”CubedOS: A SPARK MessagePassing Framework for CubeSat Flight Software,”
2017. [Online]. Available: https://frama-c.com/download/framaCDay/ FCSD17/talk/07_Brandon_Chapin.pdf.

[6] 	 R. Nugent, R. Munakata, A. Chin, R. Coelho, and J. Puig- Suari, ”The CubeSat: The Picosatellite Standard
for Research and Education,” bluecubesat.com, 2014. [Online]. Available: http:// www.bluecubesat.com/wp-
content/uploads/2014/05/www.cubesat.org_images_More_Papers_cps2008.pdf.

[7] 	 A. Hutputtanasin and A. Toorian , ”CubeSat Design Specification,” http://org.ntnu.no,03-Jun-2004. [Online].
Available: http://org.ntnu.no/studsat/docs/proposal_1/A8-CubesatDesignSpecification.pdf.

[8] 	 R. Bedington, X. Bai, E. Truong-Cao, Y. C. Tan, K.Durak, Villar Zafra, J. A. Grieve, D. K. L. Oi, and A. Ling,
Nanosatellite experiments to enable future space-based QKDmissions, EPJ Quantum Technology, 18-Oct-
2016. [Online]. Available: https://epjquantumtechnology.springeropen.com/ articles/10.1140/epjqt/s40507-
016-0051-7.

[9] 	 J.R. Wertz, W.J. Larson, ”Space Mission Analysis and Design.” Third Edition, Microcosm Press,1999.

[10] 	 A. E. Heunis, ”Design and Implementation of GenericFlight Software for a CubeSat,” psu.edu, 2014. [Online].
Available: http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.838.2694&rep=rep1&type=pdf.

197
Tecnología en marcha, Edición especial

Movilidad Estudiantil 6, 2019

[11] 	 J. Bahr, ”An Advanced Approach to Satellite Software andCom- munication Based on SmartOS and Compass
Protocol,” 2016. [Online]. Available: http://www.diva-portal.org/smash/get/diva2:1031994/FULLTEXT02.

[12] 	 M. L. Volstad, ”Internal Data Bus of a Small Student Satellite,” 2011. [Online]. Available: https://daim.idi.
ntnu.no/ masteroppgaver/006/6403/masteroppgave.pdf.

[13] 	 A. B. Ivanov and S. Bliudze, ”Robust Software Development for University-Built Satellites,” 2017. [Online].
Available: https://infoscience.epfl.ch/record/225659/ files/2017IEEEPaper.pdf.

[14] 	 W. Pree, ”Meta PatternsA Means For Capturing the Essentials of Reusable Object-Oriented Design.” [Online].
Available: https://pdfs.semanticscholar.org/2bf6/ 7e7f683acf2625640892b72ef07f7bafdd95.pdf.

[15] 	 Vermont Technical College, CubedOS Operating System. 2018. Cube- dOS documentation generated from
Latex files. [Online]. Avail- able: https://github.com/cubesatlab/cubedos/tree/ master/doc.

[16] 	 L. Prokop, NASAs Core Flight Software - a Reusable Real-Time Framework, 2014. [Online]. Available:http://
www.uh.edu/nsm/_docs/cosc/seminars/2015/0225-prokop-slides.pdf.

[17] 	 J. Wilmot, Using CCSDS Standards to Reduce Mission Costs. [On- line]. Available: https://ntrs.nasa.gov/archi-
ve/nasa/ casi.ntrs.nasa.gov/20170007440.pdf.

[18] 	 J. D. Mooney, Bringing Portability to the Software Process , 1997. [Online]. Available: https://pdfs.semantics-
cholar.org/ ef08/695a3e437ea58f48e247f72b4bac61140c5c.pdf.

[19] 	 Pumpkin Inc, Pluggable Processor Module E1 (PPM E1). [Online]. Available: http://www.pumpkinspace.com/
store/p129/Pluggable_Processor_Module_E1_(PPM_E1).html. [Accessed:Jun-2018].

[20] 	 CubedOS Project Overview, cubesatlab.org. [Online]. Available: http://www.cubesatlab.org/CubedOS.jsp.
[Accessed: Jun-2018].

[21] 	 GitHub - libcsp. [Online]. Available: https://github.com/ libcsp/libcsp. [Accessed:Jun-2018].

[22] 	 Features Overview [About FreeRTOS]. [Online]. Available:https://www.freertos.org/FreeRTOS_Features.html.
[Accessed: Jun-2018].

[23] 	 STK600, Microchip Technology Inc. [Online]. Available: http://www.microchip.com/DevelopmentTools/
ProductDetails.aspx?PartNO=ATSTK600. [Accessed: Jun-2018].

[24] 	 AT32UC3C0512C, Microchip Technology Inc. [Online]. Available: https://www.microchip.com/wwwproducts/
en/AT32UC3C0512C. [Accessed:Jun-2018].

[25] 	 D. McComas, NASA/GSFCs Flight Software Core Flight System, 2012. [Online]. Available: https://ntrs.nasa.
gov/ archive/nasa/casi.ntrs.nasa.gov/20130013412. pdf.

[26] 	 A. Cudmore, NASA/GSFCs Flight Software Architecture: Core FlightExecutiveandCoreFlightSystem,2011.
[Online]. Available: http://flightsoftware.jhuapl.edu/files/2011/FSW11_Cudmore.pdf.

[27] 	 CubeSpace, ”CubeComputer.” [Online]. Available: https://cubespace.co.za/cubecomputer/.

[28] 	 A. Cudmore, G. Crum, S. Sheikh, and J. Marshall, Big Software for SmallSats: Adapting cFS to CubeSat
Missions. [Online]. Available: https://digitalcommons.usu.edu/cgi/viewcontent. cgi?referer=https://www.goo-
gle.com/&httpsredir=1&article=3303&context=smallsat.

