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Abstract
Gene interaction models are weighted graphs derived from replicates of gene abundance time-
course data, where each weighted edge is a probability of gene association. These interaction 
models are a tool to assist biological researchers in understanding gene relationships. Two 
new genetic algorithms, one fairly traditional and the other based on crossover with infrequent 
application of a chaotic mutation operator, are developed specifically to produce gene 
interaction models from sparse time-course abundance data. Both genetic algorithms evolve 
a new population from a current population of directed acyclic graphs, each representing 
a Bayesian model for possible gene interaction. The genetic algorithm fitness is the relative 
posterior probability that a Bayesian model fits the gene abundance replicates. These Bayesian 
likelihoods are computed using one of three analysis techniques: cotemporal, first order next 
state and second order next state. The weighted gene interaction models reflect the directed 
acyclic graphs and their likelihoods present in the final populations of numerous independent 
genetic algorithm executions. Using a simulated set of genes, these two genetic algorithms 
find the embedded signals and are consistent across analysis paradigms. Results from a set 
of biological gene abundance data, from Arabidopsis thaliana stimulated by the plant hormone 
auxin, are modeled.

Palabras clave
Modelo de interacción genética; algoritmos genéticos; probabilidades Bayesianas; grafo 
acíclico dirigido. 

Resumen
Los modelos de interacción genética corresponden a grafos ponderados que se generan a partir 
de replicaciones de abundancia genética en distintos tiempos de observación, en donde cada 
arista con peso es una probabilidad de asociación genética. Estos modelos de interacciones 
son herramientas empleadas por los investigadores en biología para comprender las relaciones 
genéticas. Dos algoritmos genéticos fueron desarrollados para modelar interacciones genéticas 
a partir de información de entrada obtenida en experimentos científicos (abundancia genética), 
en donde un algoritmo sigue un esquema tradicional, mientras que el otro (no tradicional) se 
basa en la etapa de ‘crossover’, con la aplicación de la mutación de manera poco frecuente. 
Ambos algoritmos genéticos evolucionan una población actual conformada por grafos acíclicos 
dirigidos para producir una nueva población, en donde cada grafo representa un modelo 
Bayesiano para una posible interacción genética. El ‘fitness’ empleado en los algoritmos 
genéticos consiste en la probabilidad relativa posterior en la que un modelo Bayesiano se ajusta 
a las replicaciones de abundancia genética. Estas probabilidades Bayesianas son calculadas 
utilizando una de las tres técnicas de análisis: cotemporal, estado siguiente del primer orden y 
estado siguiente del segundo orden. Los modelos de interacción genética ponderados reflejan 
los grafos acíclicos dirigidos y sus probabilidades presentados en la última población de cada 
una de las numerosas ejecuciones independientes del algoritmo genético. Empleando un set 
de genes simulado, ambos algoritmos genéticos encuentran las señales que se han diseñado 
y se mantienen consistentes entre paradigmas. También, se presentan modelos empleando un 
set de datos de la abundancia genética obtenida a partir del estudio de la planta Arabidopsis 
thaliana estimulada por la hormona auxina.
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Introduction
Deoxyribonucleic acid (DNA), discovered in 1869 by the scientist Friedrich Miescher, is a 
molecule that resides mostly in the cell nucleus and contains the genetic information used 
to create proteins, which are essential for all the biochemical functions that occur in living 
organisms (Miescher, 1871). The DNA is composed of genes which contain a particular set 
of instructions to create a protein. In order to make a protein, a process, gene transcription, 
copies each of the chemical bases into messenger RNA (ribonucleic acid), mRNA. The mRNA 
moves out of the nucleus and uses cell organelles in the cytoplasm called ribosomes to form 
an amino acid that finally folds and configures to form the protein. The genes involved in gene 
transcription interact with each other to produce the protein. The amount of mRNA at a certain 
time is known as transcript abundance (or protein or metabolite abundance) and is associated 
with gene activity. Scientists are interested in discovering how the genes interact in the process 
of creating a protein. Predicting gene interactions can help scientists to discover associations 
involved in biochemical systems [22], [8].
Many research projects have focused on the development of appropriate mathematics and 
statistics to describe gene interaction and on the application of computational tools to effectively 
search for gene interaction models [4], [9], [25], [20]. This work builds upon the approach 
developed using Bayesian posterior probability and a Metropolis-Hastings search algorithm [20]. 
From several published papers [20], [19], [21], their methods often predicted true interactions 
with high probabilities. However, the computation basis, Metropolis-Hastings search, was very 
time intensive and limited the number of genes that could be analyzed. 
The main focus of this paper is to discuss a new computational technique, based on genetic 
algorithms (GA), as an improvement of the Metropolis-Hastings (MH) approach. This work is 
a collaboration between Wake Forest University and Tecnológico de Costa Rica. The main 
reasons to develop this new approach is to significantly improve the time required to produce 
interaction models, and to support scaling up the number of genes. One of our main goals is 
to more thoroughly visit the high likelihood portions of the search space so that more accurate 
posterior probabilities can be found. For analyzing 12 genes together, the MH approach has 
about a 3-week runtime, while the GA only requires several hours.

Gene Interaction Models
A graph is a mathematical representation of objects connected by some relationship. These 
objects are better known as nodes and their connections are called edges. There are many 
types of graphs depending on the context. The edges can be weighted or not. In this project, 
three different types of graphs are used: the weighted directed graph, the weighted undirected 
graph and the directed acyclic graph (DAG) [29], [2]. In a weighted directed graph, the edges 
are directed from one vertex to another, and the edge weight represents the strength of the 
directed connection. In a weighted undirected graph, the edges are between vertices (with no 
preferred direction) and the edge weight indicates the strength of the undirected connection. A 
directed acyclic graph is a directed graph with the additional property that for each vertex there 
is no non-empty sequence of directed edges leaving and returning to the vertex, i.e. there are 
no cycles.
Given the genes g_1,…,g_k, a DAG with nodes labelled with g_1,…,g_k is a model for the 
interaction of these genes. The DAG shown in figure 1 is an interaction model, where every 
relationship represents the influence between the genes. The directed edges of the DAG capture 
the notion of one of three gene relationships: cotemporal, first order next state, or second order 
next state. The cotemporal relationship indicates that the gene abundance satisfies some 
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identity at each time step. The first order next state relationship indicates the gene abundance 
are strongly related from one-time step to the next. The second order next state indicates that the 
gene abundance of the first gene at times t-1 and t are strongly related to the gene abundance 
of the second gene at time t+1.
An important question is how likely a particular DAG fits the replicate abundance data, 
L(DAG|R_1,…,R_k), i.e. how well does the DAG reflect the abundance measurements. Of 
course, such a likelihood would depend upon the underlying analysis paradigm (cotemporal, 
first order next state, or second order next state) applied to the DAG given the time-course gene 
abundance data (mRNA measurements at a small number of time points). Closed forms for each 
of these three paradigms have been developed, applied and studied [20], [19], [21].
Examining all possible DAGs to discover exact posterior probabilities of all gene-to-gene 
interactions is infeasible; the space of all possible DAGs has doubly exponential size as a 
function of the number of genes [20]. Therefore, heuristic search algorithms must be employed. 
A further restriction for the DAGs considered in this research is that no child can have more than 
three parents.
The final product of the analysis is an amalgamated model (weighted graph). The amalgamated 
model is constructed from a number of composite models (weighted graphs). Each composite 
model is a reflection of a large number of DAGs. An effective and fast technique which allows 
efficient sampling of a large DAG space is a genetic algorithm.

Genetic algorithms
The main algorithmic search technique utilized in this novel approach is the genetic algorithm 
(GA). These are used for heuristically solving difficult search and optimization problems. 
Basically, the motivation of a GA is to naively mimic natural genetic operations. GAs are 
stochastic algorithms which embrace the concepts of the genetic inheritance and Darwinian 
strife for survival [15], [5].
The genetic algorithm vocabulary is influenced by natural genetics. In general terms, a main 
concept is the individual, or chromosome, that belongs to a population. Every chromosome 
consists of genes, and every gene represents a characteristic that may be inherited. To avoid 
confusion, we refer to the individuals (rather than chromosomes) in the populations.
Every individual represents a possible “solution”. The current population of individuals 
corresponds to a selected sample in the space of potential solutions. To facilitate the search 
for better solutions, the GA exploits the individuals of the current population with the crossover 
operator and it explores the search space by applying a mutation operator to current individuals. 
For this reason, GAs have been quite successfully applied in many arenas [12], [15], [5].
A genetic algorithm starts with an initial population, of fixed size. The basic idea is to iteratively 
evolve a new population of individuals from the current population. Fundamentally important is 
a function that compares one individual to another, the fitness function. Ideally, one individual 
is more fit than another if it represents a better solution (in our case, higher likelihood). The 
new population is formed by selecting parents from the current population (with selection rates 
proportional to fitness), exchanging genetic information via the crossover operator yielding 
children, and finally mutating the children. Crossover, governed by the crossover rate, combines 
the features from the two parents to form two offspring. Mutation, subject to the mutation rate, 
arbitrarily alters one or more features of a selected child which introduces extra variability into 
the new population. As well, the elitism operator can be applied to advance a number of superior 
individuals from the current population to the new population.
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Genetic algorithms excel at finding good solutions for a problem. Typically each generation is 
obtained in a polynomial algorithm time, as well most space requirements are modest.

Traditional genetic algorithm

First, a traditional genetic algorithm is developed to create weighted gene interactions 
models from multiple sets of gene abundance data. Every individual in a population is an 
adjacency matrix, which represents a directed acyclic graph (DAG), and the relative likelihood, 
L(DAG|R_1,…,R_k). In mathematical terms, an adjacency matrix is a square matrix used to 
represent a graph, where an entry ‘1’ in the (i,j) cell implies the presence of a directed edge from 
gene g_i to gene g_j. An entry ‘0’ corresponds to the lack of a corresponding directed edge. 
Figure 1 illustrates this idea.

Figure 1. The left panel is an adjacency matrix representing the DAG in the right panel. For example, the ‘1’ entry 

on row A and column B corresponds to the presence of the directed edge A→B in the DAG. This directed edge 

indicates that gene A influences the gene B. Furthermore, A influences D indirectly since the edge B→D is present in 

the DAG.

When creating the initial population, three phases are applied to create the individuals, as seen 
in figure 2.  First, all the individuals are randomly created. Next, six steps identify and keep 
the top individuals, then replace all the others. Each step in this phase identifies an increasing 
number of top individuals. Last, three steps keep the majority of top individuals and then 
mutate the remaining. The purpose of this initialization is to create a starting population where 
the individuals are of high fitness and the population overall is diverse. Using only random 
assignment, often the GAs were not efficient in their search.

Given the current population, the GA proceeds to create the new population using selection, 
crossover and mutation. Before starting selection, an elitist strategy is applied. The top ten 
percent of the individuals in the current population are inserted directly into the new population.
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Figure 2. Pseudocode with the steps for creating the initial population.

Ranked selection is used to choose parents [15]. First, the current population is sorted based 

on their likelihoods. Then, every individual receives a fitness value based on a uniform and linear 

mapping of these sorted likelihoods into the intervals between 0.0 and 1.0. The worst ranked 

individual will have the smallest fitness value, and the best will have the largest fitness. Ranked 

selection assures that all the individuals have a reasonable chance to be selected. By this, the 

best individual will have the best chance to be selected but the worst could have a reasonable 

opportunity to reproduce as well. After this process, based on the fitness based probability, a 

pair of parents are selected, with replacement.

Governed by the probability of crossover (P_x=0.05), both chosen parents could become 

the two new offspring or the crossover operator is applied to the parents to produce two new 

offspring. For the crossover operator, a column in the adjacency matrices is chosen arbitrarily, 

and then the entries in those columns are exchanged, creating two new individuals. The new 

individuals are added to the new population. For example, having two parents (A and B), as 

shown in figure 3, and selecting two arbitrary selected columns, column C and column D, both 

columns get exchanged to produce two different children. The new children are included in the 

new population.
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Figure 3. In the image above two parents (A and B) that are going to reproduce, swapping the columns C and D 

respectively. In the image below, the result of this crossover.
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The next mechanism to apply is mutation. Based on probability of mutation (P_m=0.3), this 
process changes values of randomly selected entries in the adjacency matrix. The affected 

changes either create new edges or delete existing edges. The figure 4 illustrates this process.

Figure 4. An example of the mutation, changing a random entry in the matrix. A new edge, C→A, is added.

After the application of crossover and mutation, some individuals in the new population may no 
longer be a DAG, cycles may have been introduced by either crossover or mutation. Because 
of this, an additional function for repairing the individual with cycles is required. Essentially the 
repair function iteratively identifies all cycles in the directed graph and removes an edge in the 
largest cycle until no cycles remain. This is done very efficiently using Tarjan’s algorithm [27]. 
The repair algorithm is shown in figure 5. For example, in the figure 4, after applying the mutation 
we don’t have an individual with the structure of a DAG, so it needs to be fixed (figure 6).

Figure 5. Pseudocode for the repairing operator to eliminate self-loops, enforce the restriction of at most three 

parents, and break cycles.
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Figure 6. In the left panel, the adjacency matrix for the directed graph that contains a cycle, A→B,B→Cand, with its 
graph representation. On the right, the same adjacency matrix after applying the repair operator, breaking the edge 

B→C, and the repaired DAG.

When all the previous functions are applied, a new population results and we are ready to start 
a new iteration. The total number of iterations, the population size, the crossover and mutation 
rates are determined a priori. The last individuals of the final generation create a composite 
model (described on a later section). The figure 7 shows the pseudocode for the algorithm.

Figure 7. Pseudocode of the traditional genetic algorithm.
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CHC genetic algorithm

A non-traditional genetic algorithm, the CHC genetic algorithm (CHC GA) [3], is implemented 
specifically for finding gene interaction models. There are several significant differences 
between this CHC GA and the traditional genetic algorithm discussed previously. First, selection 
is not based on the fitness function. Second, the CHC GA has a deliberate mechanism to avoid 
crossover of very similar individuals. Third, the crossover operator is half uniform crossover 
(HUX), which is a very disruptive form of crossover. Finally, mutation is not regularly applied. 
Instead, there is a procedure to detect when the population has lost its diversity, which then 
intensively uses mutation to reinitialize the current population and afterwards continues [28].

There are some concepts that are shared between the CHC and the traditional genetic algorithms. 
For example, every individual in a population is an adjacency matrix for a DAG and its likelihood. 
The initial population, the likelihood value calculation and the DAG repairing methods are used 
exactly as in the traditional genetic algorithm implementation. Every population of individuals 
has a fixed size.

Selection of the parent pairs is performed randomly from the current population without 
replacement. Every individual in the current population has an equal opportunity to produce a 
child. This selection technique is not dependent on the likelihood of the individuals.

The crossover operator computes the Hamming distance3 between the two parents. A threshold 
is established, equal to one quarter of the number of significant entries in an adjacency matrix. 
If the Hamming distance does not exceed the threshold then the parents do not produce the 
offspring. The algorithm avoids crossover between very similar individuals.

Otherwise, the parents use the HUX crossover operator to produce two children. On this 
type of crossover, exactly half of the nonmatching entries are swapped [1]. If no children 
are generated the threshold is reduced and a new pairing of parents begins. When all the 
children are generated, instead of replacing the current population with the children, the 
newly created children must compete with the members of the current population for survival, 
cross-generational competition. More specifically, the parents and children are merged and 
ranked according to the likelihood values and then the new population is created in an elitist 
way by selecting the highest ranked individuals to fill the new population. When the threshold 
becomes negative, the mutation operator is used to reinitialize the current population. In this 
case, the population is reinitialized and the cycle is repeated, by using the individual with the 
highest likelihood for creating the replacement population. The new individuals are created by 
mutating the best individual randomly. The best individual is also added unchanged to this new 
population, insuring that the next round of crossover cannot converge to a less likelihood.

An example of HUX crossover is seen in figure 8, where the two parents, A and B, who are 
going to be crossed. In the first step, the entries where the two parents differ are marked and 
as we can see they differ on four entries. In the second step, we need to randomly choose half 
of those differing entries in other to do the crossover. In the image, those entries are marked by 
green squares. The result finally is going to be two different offspring, with the selected entries 
swapped from their parents. 

3	 The Hamming distance between two adjacency matrices of equal size refers to 
the number of entries in which the corresponding symbols (in this case ‘0’ or ‘1’) 
are different.
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Figure 8. An example of HUX crossover in CHC genetic algorithm. The first step search for the bits where the two 

parents differ (marked in red). The second step, randomly choose half of these bits to be swapped (marked in 

green). In the image below, the result of this crossover.
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The CHC genetic algorithm only uses mutation when the population has stagnated. When the 
threshold value drops to zero there have been several generations without any new offspring 
accepted into the population. Figure 9 illustrates the CHC implementation.

Figure 9. Pseudocode of the CHC genetic algorithm.

Model Building Methodology
Gene interaction models, based on replicates of gene transcription data, are constructed by 
a genetic algorithm based on either cotemporal, first order next state, or second order next 
state likelihood which results in a specific fitness function. At the conclusion of the execution 
of the genetic algorithm, the unique DAGs from the final population, FP, are the ingredients 
for the composite model. The composite model is a weighted directed or undirected graph, 
corresponding to next state or cotemporal analysis, where the weight of any edge e is:

w(e) = ∑d∈FP X(e ∈ d)L(d|R1 ,R2 ,R3)
∑d∈FP L (d|R1 ,R2 ,R3)  (1)

where χ(e∈d)  is a 0/1 function with the value of 1 if and only if the edge e belongs to the DAG 
d. All the edge weights have values between 0.0 and 1.0, inclusive.
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Edges that consistently appear in the DAGs or appear in DAGs with large likelihood tend to have 
high weight in the composite model. Similarly, edges that consistently do not appear in DAGs or 
appear in DAGS with low likelihood tend to have low weight in the composite model.

For each of the three analysis paradigms, twelve composite models are created. The twelve 
composite models consistently have much in common, however, not unexpectedly, often are 
not identical. Each of these twelve provides an important glimpse into the gene interactions. 
After computing the union of the unique DAGS from the final populations which form the twelve 
composite models, this new population (UFP) is the basis for the amalgamated model. The weights 
of the edges of the amalgamated model are computed exactly as those for the composite model 
where the final population FP is now UFP. Each weighted edge in the amalgamated model is the 
relative probability of gene interaction between the two vertices incident with the edge. There will 
be three amalgamated models, one for each analysis paradigm. Just as with the creation of the 
composite models, the weights of the edges in the amalgamated models are not based on the 
frequency of occurrence of the DAGs, but exclusively on the computed Bayesian likelihoods of 
the unique DAGs in the final population UFP. The amalgamated models are the result of many 
observations of the genetic algorithm measuring how well DAGs in the chromosome populations 
fit the replicates of gene abundance data.

Two types of experiments are required. First, it is necessary to validate the algorithmic technique 
through the use of engineered data. In this simulated data, a specific signal is placed. The 
modelling technique must be able to accurately discover this signal. Successful capture of this 
signal will verify algorithmic correctness. Second, the modeling algorithm will be applied to time 
course gene transcription data collected from Arabidopsis thaliana. The various cotemporal and 
next state models will suggest likely gene interactions.

Results

Using engineered gene data

Many different engineered data sets were examined as part of the protocol to establish the 
reliability of the modeling algorithms. This is necessary before applying the algorithm to biological 
data to generate gene interactions predictions. We discuss one of these using engineered data, 
which is representative of the others.

In this simulated data set, three replicates of time course gene transcription are used with 12 
different genes. The names of these genes are BE1, …, BE12. Each replicate is based on 
simulated abundance measurements taken at 10 different times. These data were generated in a 
cotemporal context; hence, the best modeling results are expected when generating cotemporal 
gene interaction models. However, when using the next state contexts, we expect consistency 
between the next state models, even between the traditional and CHC genetic algorithms.

The cotemporal signal placed in the replicates was generated as follows: BE1, ..., BE4 are highly 
correlated (ρ = 0.9), BE5, ..., BE8 are highly correlated (ρ = 0.9), and BE9, ..., BE12 are highly 
correlated (ρ = 0.9). A multivariable Gaussian random number generator was used to engineer 
the relationships and to introduce variation in each of three replicates. An expected cotemporal 
model from this data is shown in figure 10.
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Figure 10. A graph representation of the expected cotemporal model for the engineered data set.

The amalgamated cotemporal model shown in figure 11 captures exactly the engineered 
cotemporal signal. This model was generated by the traditional and CHC algorithms, where both 
algorithms found the same signals but with different probabilities, matching with the model in 
the figure 10. 

Figure 11. The amalgamated model of the traditional and CHC genetic algorithms using the cotemporal paradigm 
(with cutoff value 0.7). Both genetic algorithms generated similar gene interactions with different probabilities 

between the edges. The probabilities correspond to the next format: (traditional / CHC).

Even though the data was engineered exclusively with a cotemporal signal, there certainly 
can exist first order next state and second order next state signals in the data. In figure 12 
the second order next state models strongly suggest the existence of a signal. The traditional 
and CHC models six edge (B11→B5, B6→B2, B6→B4, B6→B2, B9→B4, B8→B7). There are six 
directed edge in the traditional, not CHC, model (BE6→BE1, BE3→BE5, BE5→BE1, BE9→BE2, 
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BE11→BE8, BE12→BE8). The six directed edges found in both models shows strong agreement. 
Similarly, but not shown, there is significant agreement between the first order next state models.

Figure 12. Amalgamated (with cutoff value 0.7) second order gene interactions from the engineered data set using 
the traditional and CHC genetic algorithms. Information from twelve composite models were integrated to create 

these amalgamated models. The bold edges represent the similar edges between the models.

These models illustrate the diversity of prediction models created by the genetic algorithms. 
There are many similarities between the cotemporal/next state models, but there will be variation 
between the models. The model variation is due to data differences in the replicates and to the 
stochastic nature of the genetic algorithms.

Using arabidopsis gene data

The genetic-algorithm based methods are applied to an experimentally generated set of 
transcript abundance data from roots of Arabidopsis thaliana after auxin treatment [10]. The goal 
of this analysis tests whether our probabilistic amalgamated models will identify relationships 
that have been identified through experimental approaches, and whether they can identify 
interesting new relationships that then can be examined experimentally. The gene abundance 
data was derived from work in the laboratory of Professor Gloria Muday (Department of Biology, 
Wake Forest University).
This analysis focused on a set of 12 Arabidopsis thaliana’s genes from a large time-course 
microarray experiment examining the effect of the plant hormone indole-3-acetic acid (IAA) 
on changes in transcript abundance [10]. To generate this data, triplicate samples of roots 
of Arabidopsis thaliana were either mock-treated or treated with 1 μM IAA for 0, 0.5, 1, 2, 4, 
8, 12, or 24 hours [10]. This data set identified over 1200 transcripts that showed consistent, 
reproducible, and significant enhancement or reduction after IAA treatment [10]. This set of 12 
genes were selected previously [21]. Seven genes (IAA1, IAA2, IAA3, IAA14, IAA16, IAA18 
and IAA19) are members of the AUX/IAA family, a group of transcriptional repressor proteins 
[11], [23], [24]. There are also genes encoding two transcriptional activator proteins linked to 
root development, ARF19 and WRKY23 [6], [17], and signaling proteins implicated in auxin 
regulated processing including a G-protein (XLG1), a kinase (PINOID), and a regulator of cell 
cycle progression, cyclin (CYCB2) [7], [26].
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In the figure 12, results obtained using both genetic algorithms (traditional and CHC) are 
shown. When using the cotemporal paradigm, the program finds 9 signals (IAA3—PINOID, 
CYCB2—PINOID, PINOID—IAA14, IAA14—IAA18, IAA18—XLG1, WRKY23—IAA16, IAA2—
ARF19, ARF19—IAA19, IAA19—IAA1) in both models. Besides, when using the first order next 
state paradigm, the program finds only 1 signal between the models (IAA16→ARF19). Finally, 
when using the second order next state, the 4 signals, WRKY23→PINOID, WRKY23→IAA1, 
ARF19→IAA16, IAA19→IAA14, are found among models. The figure 13 illustrates a combined 
model, only showing the signals detailed above.

Figure 13. Amalgamated models with cutoff value 0.7, when using the traditional and CHC genetic algorithms in 
the three different modelling paradigms using real Arabidopsis thaliana time-course data. Information from twelve 

composite models were integrated to create each of the amalgamated models. The bold edges represent the similar 
edges between the models on each paradigm.
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Figure 14. Gene interactions, combining the edges that are similar in the cotemporal (brown), first order next (red) 
state and second order next state (blue) using the traditional and CHC genetic algorithms with the Arabidopsis 

thaliana data. The probabilities correspond to the next format: (traditional / CHC).

Implementation details

This project was developed using the programming multiparadigm language python, in its version 
3. Different libraries for python were used in all the development, including: bigfloat, networkx, 
numpy, scipy, graphviz and pydotplus. These libraries simplified the general development of the 
two different genetic algorithms.

This project can be found in the next links:

•	 Traditional Genetic Algorithm: https://github.com/keme040994/SGA_Project

•	 CHC Genetic Algorithm: https://github.com/keme040994/CGA_Project

The project was developed based on a modular technique using different packages to keep the 
main functions separated. The multiple operators programmed for the main functions can be 
found in different specific files in the packages.

Conclusions

As main conclusions for this project in the next paragraphs we discuss about the accomplished 
goals of this new approach and general facts, to understand the relevance of this project.

Both genetic algorithms, the traditional GA and CHC GA are fairly effective at determining 
composite/amalgamated models in terms of capturing the signal. The genetic algorithms are 
very fast compared to the last approach, using the Metropolis-Hastings algorithm, when it takes 
several hours to display results instead of hundreds. The results displayed by the traditional GA 
and the CHC GA are also very consistent.

To maintain a legal population, we required and initialization and repairing operators. Also, the 
development environment, using python3 as the programming language with some libraries, 
provided and effective and portable platform.
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As a future work, we hope to scale up the number of genes, in order to find more signals in 
the gene interactions. Another important to accomplish is to make the genetic algorithms more 
flexible, like providing a user interface or an easier method to use the platform.
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