
Classifying via Hierarchical Temporal Memory

Fabián Fallas-Moya
Sede del Atlántico

Universidad de Costa Rica
Cartago, Costa Rica

Email: fabian.fallasmoya@gmail.com

Francisco Torres-Rojas
Escuela de Computación

Instituto Tecnológico de Costa Rica
San José, Costa Rica

Email: torresrojas@gmail.com

Abstract—With recently advances in technology (hardware
and software) there is an interest of humanity in having machines
that behave like humans do. One aspect that researchers have
to overcome is how to imitate the cognitive processes of the
brain; cognitive processes like visual pattern recognition, speech
recognition, space comprehension and so on. This task needs an
algorithm that receives raw information from the environment,
thus a signal processing method is needed to convert the raw
input into useful information. Computer Vision is an interesting
field of research, because the process of capturing images is
simple and the hardware to process these images is available
with current technology. This research focuses on the field of
classifying images using hierarchical temporal memory (HTM),
a machine learning technique that imitates the neocortex and
emulates cognitive processes.

I. INTRODUCTION

The computing power of a computer is greater than anyone
could imagine in the past. The main advantage using computers
is their capability to process information faster than a human
can do it; in this context the advance in computer vision is
remarkable. Computer vision is a field that includes methods
for acquiring, processing, analyzing, and understanding images
(that come from electronic devices) to produce useful informa-
tion [13].

Video classification could be applied to a full body tracking
(people). This type of classification is a common research
issue, due to its relevance in robotics and surveillance. This
research proposes a technique to classifying objects (people)
using a new algorithm based on hierarchical temporal memory
(HTM).

A. Video classification

Video tracking is the process of finding the location of
one or more moving objects in each frame (image) of a video
sequence [11], as shown in Figure 1. A target is the object of
interest tracked by a system. One system can track animals,
vehicles, micro-organisms or another specific object. However,
people has an enormous amount of attention because it can
produce important information in areas like public transport,
traffic congestion, tourism, security, and business intelligence.

There is an important aspect in a tracking system: to detect
if the target is present on a frame. That is why an algorithm
to classify can be implemented to detect if a specific target
is present on an image or not. It is the first step to track an
object and it is the main concern of this research.

Fig. 1: Object tracking: Graphical description. Taken from [1]

B. Challenges

A video is composed by a sequence of frames. A particu-
larity of video is that its content can be affected by environ-
mental aspects, for example noise or shape transformations.
There are some challenges for a video classifying system to
overcome [8]. The first one is clutter, which happens when
the appearance of any object or the background are similar
to the appearance of the target, possibly interfering with its
observation. Changes in pose also make it harder the video
classification process. When a target rotates, it could have a
lot of new features never seen before by the system. Another
challenge is occlusion, that is to say, when a target is not
observed while partially or totally occluded by other objects.
For instance, when a person moves behind a car or any other
object, some frames from the video sequence lose the target.
This last aspect (occlusion) is the main focus of this research.

Video tracking can be defined as a process involving three
tasks: feature extraction, target representation, and localization.
This research proposes a new algorithm structure, where a
classification process is implemented to verify the presence
of the target in the frames. Our algorithm uses an emerging
technology for classification: HTM networks.

C. HTM

Hierarchical Temporal Memory (HTM) is a model of
algorithms based on the neocortex. HTM can be understood
as a specialization of Neural Networks, because it uses the
concept of neuron1 (in HTM is more common use the term
“cell” instead of “neuron”) but with a different implementation
and topology.

1) Region: As Hawkins [6] explains, the concept of regions
comes from biology where regions are sets of cells connected
to other regions in the neocortex. Figure 2 shows a graphical
architecture of a region. An HTM region consists of a large
number of cells, arranged into columns connected to other
cells. A cell has n connections.

1The terms cell and neuron will be used interchangeably in this research.



Fig. 2: Region of a HTM: just a few cells are active at a time.
Taken from [5, p. 11]

2) Hierarchy: A hierarchy is a set of regions distributed
into levels. These concepts are very similar to convolutional
neural networks [3]. In HTM, each region represents one level
in the hierarchy. Lower levels represents raw features, and
as one ascend through the hierarchy, complex features are
represented. Figure 3 illustrates this idea. The first levels have
small features of an object, which are combined in higher
levels to form more complex objects.

3) Prediction: HTM can perform inference on inputs [5].
It can match these inputs to previous spatial and temporal
patterns. By matching stored sequences with the current input,
a region forms a prediction.

4) Creating structures: A full (or complete) HTM imple-
mentation use the following components:

1) Raw data: it is the data in its simplest form: integers,
letters, floating numbers, etc.

2) Encoders: Transform raw data into sparse distributed
representations (SDR2).

3) Spatial Pooler: receives the SDR and chooses a subset
of columns (from its region).

4) Temporal Pooler: receives the selected columns from
the spatial pooler and connects cells (synapses).

5) CLA: turns the prediction of the temporal pooler into
the predicted value.

One option to build a full (complete) implementation of
HTM is to use the online prediction framework (OPF). It builds
a full structure with all components and their connections.

D. Training

The training begins in the lower regions up to the higher
regions. Every region learns different patterns through cells.
These cells are connected to other cells arranged in columns.
The cells activation function works with different cells, as seen
in Figure 2 it is not necessary that cells must be close to each
other.

II. IMPLEMENTED ALGORITHM

Figure 4 illustrates the implementation of our algorithms.
The case of artificial neural networks (ANN) and support

2All cells are interconnected, but only a small number of them are active at
one time. Sparse: only a small quantity of cells are active at a time. Distributed
means that the activation of different cells are needed to represent a pattern.

Fig. 3: HTM hierarchy: a hierarchy comprised of four levels
(regions).

Fig. 4: The Object Tracking algorithm structures, developed for
this research.

vector machines (SVM) are similar. They receive the data
directly to a classifier. ANN uses a feedforward backprop-
agation structure, using the library PyBrain. The SVM uses
the LIBSVM library. Regarding to HTM Soft, it combines
a temporal pooler with a k-nearest neighbor (kNN) classifier
[10].

We use the name “Hard” to describe a full or complete
implementation of HTM, using all the HTM components.
It receives raw data and process it with all the component
shown in Figure 5. Talking of raw data, it is obtained by the
feature extraction step, for this we used scale-invariant feature
transform (SIFT).

A. SIFT

The first task to do is the feature extraction (see Figure
4). SIFT was used to achieved this goal. It is one of the
most successful feature extraction techniques [7]. It does two
main actions: detects interest points from an image (called
interest point detector) and gets a local descriptor from each
point (called the descriptor). Its main advantage is to avoid
differences in rotation and scale.



Fig. 5: A complete structure of a HTM network. It is a complete
hierarchy.

Figure 6 explains the whole SIFT process. First, all in-
terest points from the image are detected using difference-of-
Gaussian functions [7]. Then, as Solem [12] describes, it starts
by taking the dominant gradient of the point based on the
direction and magnitude of the image gradient around each
point. Next, it takes a grid of subregions around the point, and
for each computes an image gradient orientation histogram.
Finally, the histograms are concatenated to form a descriptor
vector.

Over a high-quality image, we can have approximately
430720 SIFT points. This quantity is too big for the hardware
used on this research. As a result, some restrictions were
imposed: the usage of images of 50×50 pixels and 12 interest
points.

B. Dense SIFT

Figure 7 shows an example of an image used for doing our
classification process. It has a person on the left side wearing
a red shirt and raising his hands. It is important to indicate
that this implementation is different from the normal SIFT
technique. Because the points are chosen statically with a fixed
radius. The benefits of this approach is to have SIFT files of
the same size and to recognize any changes in the image.

In summary, dense SIFT can be described as [4]: (a) the
location of each keypoint is not from the gradient feature
of the pixel, but from a predesigned location; (b) the scale
of each keypoint is all the same which is also predesigned;
(c) the orientation of each keypoint is always zero. With this
assumptions, dense SIFT can acquire more feature in less time
than SIFT does. As Han et al. [4] did, this research focuses
on people.

C. A new algorithm

In order to create a complete structure of an HTM network
(as seen in Figure 5) the OPF tool was used. This is a frame-
work which creates an HTM structure with all components of
this technology.

That is why a deep modification had to be done (based on
Costa’s proposal [2]), because a classifier is needed. The first
step was to create a model in OPF, this model is created to
handle streaming data but in a low scale, for example receiving
one to ten values at a time. We use 12 interest points (from
a Dense SIFT process), each point has 128 values (from the
descriptor), for a total of 1536 values. We modified an OPF
model to accept 1536 floating values. The Spatial Pooler and
the Temporal Pooler were modified to accept our input size
(185856 values).

As can be seen on Figure 5 there is a sequence process.
First, the raw data (in our case SIFT files) is converted into
SDR data by the encoders. Then, these SDR are processed by
the Spatial Pooler and its output is processed by the Temporal
Pooler, and finally by the CLA. The latter one gives a predicted

Fig. 6: One SIFT point. (a) a frame around an interest point -
according to the dominant gradient. (b) an 8 bin histogram over the
direction of the gradient. (c) histograms are extracted in each grid
location. (d) the histograms concatenated. Taken from [12]

Fig. 7: Implementation of SIFT. It uses a technique called dense
SIFT, establishing 12 points and increasing the radius of each one.
This image is taken from one of the videos used for this research.

value, that is, our classification result. The last step of the
algorithm is to calculate the Occlusion Success Rate (OSR),
it is the accuracy of the algorithm.

The training algorithm is similar as the shown on Figure
5, the difference is that the learning process is activated on
training and there is no calculation of the OSR.

III. RESULTS AND ANALYSIS

Our algorithm was compared with another three implemen-
tations: Artificial Neural Network, Support Vector Machine
and HTM Soft (using the Temporal Pooler connected with a
K-Nearest Neighbor classifier). Figure 8 shows the box plot
(as define by Massart et al. [9]) as a result of these four
implementations. This box plot helps to identify the middle
50% of the data, the median (the thick horizontal line inside
the boxes) and the extreme points. One aspect is that the
technique of ANN has the lowest quartile 3 and the lowest
median, showing that this technique tends to failed more than
the others.

3The quartiles of a ranked set of data values are the three points that divide
the data set into four equal groups, each group comprising a quarter of the
data.



HTM Hard and SVM have similar boxes and median, but
SVM has the upper quartile and the median slightly higher,
given better results. Also the maximum point of the SVM
and ANN reaches the accuracy value of 1.0 unlike the others,
showing that these technique were accurate in some runs
(under specific conditions).

Fig. 8: Box plot for the significant factor Technique.

Finally, the most interesting aspect is the HTM Hard box
encloses its 50% of values in the thinnest box and the smallest
range from the upper quartile to the maximum point and from
the lower quartile to the minimum point. This means that most
of the values from this technique are around the accuracy value
of 0.5. This value is a similar to the others, but it shows that
this particular one tends to have less failures during tests. The
Figure 8 also shows many outliers, which is normal because
of the small range of quartiles. In comparison with the other
techniques, these outliers represents that failures and hits are
atypical. Anyway, it is the most stable one (because its small
range).

IV. CONCLUSIONS

This research has shown the development of a new algo-
rithm using the OPF tool to implement an HTM structure
to classify patterns. The evidence shows that the proposed
algorithm has a higher accuracy than using other classification
techniques. However, the execution time is considerably higher
than for other implementations. ANN, SVM and HTM Soft ran
fast on a limited hardware (an Intel i7 processor with 8GB of
RAM). Approximately, they had a run time of 5 seconds (per
run). However, HTM Hard lasted 20 minutes per run, which
is considerably higher than the other techniques.

In addition, more evidence was provided to support the idea
of using SIFT features for pattern recognition. The well known
technique of dense SIFT was used, and due to the given results,
it was found that it is an excellent tool for feature extraction.
Furthermore, it was demonstrated that with few SIFT points
the results are satisfactory. It is not necessary to process big
amount of information to get acceptable results.

V. FUTURE WORK

It would be interesting to use another combination of
technologies for the HTM Soft algorithm. For this research
we combined the temporal pooler with the kNN classifier.

However, the spatial pooler and the temporal pooler can be
combined with different technologies such as: recurrent neural
networks, Bayesian networks, reinforcement learning, sparse
dictionary learning, genetic algorithms, etc.

Also, it can be used high resolution video. Here the
resolution of 50×50 pixels resolutions was used, due to some
constraints. And used more SIFT points (more than 12), too.

Furthermore, to combine classifying processes with state-
of-the-art tracking algorithms. For example the particle filter-
ing technique. This combination can help to overcome a lot
more of challenges, such as: clutter, rotation, illumination, etc.

REFERENCES

[1] Reading University Computational. Performance Evaluation
of Tracking and Surveillance. A dataset for Computer Vision
and Pattern Recognition. 2009. URL: www . cvg . rdg . uk /
PETS2009/a.html (visited on 03/15/2009).

[2] Allan Costa. Nupic Classifier MNIST. 2014. URL: http : / /
github . com / allanino / nupic - classifier - mnist (visited on
08/08/2014).

[3] Jialue Fan, Wei Xu, and Yihong Gong. “Human Tracking Us-
ing Convolutional Neural Networks”. In: IEEE Transactions
on Neural Networks 21.10 (2010), pp. 1610–1623. DOI: 10.
1109/TNN.2010.2066286.

[4] Bing Han, Dingyi Li, and Jia Ji. “People Detection with
DSIFT Algorithm”. In: (2011).

[5] Jeff Hawkins, Subutai Ahmad, and Donna Dubinsky. “Hierar-
chical Temporal Memory and Cortical Learning Algorithms”.
In: (2011).

[6] Jeff Hawkins and Sandra Blakeslee. On Intelligence. USA: St.
Martin’s Griffin, 2005.

[7] David G. Lowe. “Object recognition from local scale-invariant
features.” In: International Conference on Computer Vision
(1999), pp. 1150–1157. DOI: 10.1109/ICCV.1999.790410.

[8] Emilio Maggio and Andrea Cavallaro. Video Tracking: Theory
and Practice. UK: Wiley: a John Wiley and Sons, Ltd, 2011.

[9] D.L. Massart et al. “Visual Presentation of Data by Means of
Box Plots”. In: (2005).

[10] Numenta. Numenta: nupic vision. 2015. URL: http://github.
com/numenta/nupic.vision (visited on 11/05/2015).

[11] Anand Singh Jal al and Vrijendra Singh. “The State-of-the-Art
in Visual Object Tracking”. In: Informatica: An International
Journal of Computing and Informatics 36.3 (2011), pp. 227–
247.

[12] Jan Erik Solem. Programming Computer Vision with Python.
USA: O’Reilly Media, 2012.

[13] Wikipedia. Computer Vision – Wikipedia, The Free Encyclope-
dia. 2014. URL: http://en.wikipedia.org/wiki/Computer vision
(visited on 05/19/2014).


