
A declarative language for generating customized
text processing and tagging applications

Paola Ortega Saborı́o∗, Rodrigo Acuña∗, Milton Lara∗, Rodrigo A. Bartels∗ and Edgar Casasola∗
∗School of Computer Science and Informatics

University of Costa Rica, San Pedro, San José, Costa Rica

Abstract—This paper presents the preliminary results of the
design and implementation of a declarative language that will
allow linguists and researchers in the Natural Language Pro-
cessing field to generate customized text processing and tagging
applications without having to learn how to code or require a
computer scientist. The language will allow the orchestration
of different functions and transformations that are commonly
used when dealing with text in the context of Natural Language
Processing and its fields, such as Sentiment Analysis and Infor-
mation Retrieval. The language compiler will generate a ready
to use Java application implementing the user defined flow.

I. INTRODUCTION

Within the field of Natural Language Processing (NLP), text
processing and tagging is a day to day task. The selection of
algorithms, techniques and operations applied to the text can
greatly affect the obtained results [1]. Because of this, most re-
searchers working in NLP often use or develop computational
tools for text processing, parsing and tagging. However this
process can be cumbersome, as usually the help of a computer
scientist is needed.

This paper presents the preliminary results of creating a
declarative language that will allow research in NLP to easily
generate custom programs for text processing and tagging.
The language provides features for producing the tagged
results in different formats. It allows the customization of the
tokenization process, defining which dictionary should be used
for word looking. Lastly, it allows the definition of any number
of transformations to be applied to each of the tokens extracted
from the text. The language allows a researcher to orchestrate
the application of different transformations in order to easily
process text in day to day NLP tasks.

The article is organized as follows. First, a description of
the main concepts required for understanding this work is
presented. Then, a small recollection of the main related work
is shown. Next, the problem that motivates this research work
is stated. Then the platform architecture, the expected user
flow, is shown and some implementation details are discussed.
Afterwards, the designed language is described and its main
components are explained with some small examples. Finally,
the conclusions and future work are presented.

II. CONTEXT

The field of computational linguistics (CL), together with
its engineering domain of natural language processing, has
emerged as one of the main research areas due to the amount of
text and content generated with the wide spread of the Internet

[2]. No matter the subfield of NLP (Information Retrieval,
Sentiment Analysis, Entity Recognition) there are two tasks
that always need to be done: text processing and part-of-speech
tagging [1].

Indurkhya et al. define text processing as: “the task of
converting a raw text file, essentially a sequence of digital
bits, into a well-defined sequence of linguistically meaningful
units: at the lowest level characters representing the individual
graphemes in a language’s written system, words consisting
of one or more characters, and sentences consisting of one or
more words.” This includes tasks like stop words, spacing and
accents removal, tokenization and stemming [3].

Part-of-speech (POS) tagging tries to label each word with
its correct part of speech [1]. This process is fundamental for
more complex natural language processing tasks like automatic
translation and sentiment analysis. Figure 1 shows an example
of POS. The phrase: “I bought a present for her yesterday.”
is analyzed and split in tokens, and each is labeled with
its grammatical function within the sentence. Due to the
importance of these two tasks, lots of work has been done
trying to make them as efficient, accurate and easy to use as
possible. Some related efforts are described next.

Fig. 1. Example of part-of-speech tagging.

III. RELATED WORK

Most of the work on the development of tools to be used
by linguists has been focused on the creation of frameworks
and tools that can be installed and used through user interfaces.
Gate [4] is a well-known example of this. Other efforts focused
on the creation of libraries that can be reused, but in order
to use them programming experience is usually required;
FreeLing [5] and Solr [6] are good examples.

To the best of the authors’ efforts, a similar initiative where
a declarative language is developed to generate programs as
the output of the language compiler has not been widely
published, as none of the queries posed on the most used
libraries (ACM, IEEE, Google Scholar) showed significant
results.



IV. PROBLEM AND MOTIVATION

Text processing and tagging are an unavoidable part of
any Natural Language Processing task [3]. Several approaches
are commonly used to address this. First, a linguist and a
computer scientist might work together, the former providing
all the linguistic analysis and the latter implementing tools for
preprocessing, text enrichment, etc. Another approach consists
on any of the two acquiring knowledge from the other field,
so in that case there are linguists learning how to code
and implementing tools themselves, or computer scientists
studying and learning linguistics. Lastly, from the previous
approaches some tools are usually developed, expanded and
made available both for free or as commercial tools.

The problem with the first two approaches is that it is time
consuming and not always possible. It essentially requires at
least two resources for doing anything. The problem with the
third approach is that available tools are seldom configurable
and adaptable to the requirements and experiments that the
linguist wants to do. So, in the end a choice has to be
made between using a tool for performance reasons, having
to modify the designed experiments, or keep the designed
methodology but working with a custom developed tool or by
hand. Even if the tool accommodates to the researcher needs,
the implementation of different scenarios is usually complex
and time consuming.

The motivation behind this work is to allow linguists to
generate their own text processing and tagging programs
without having to learn how to code in Java or any other
imperative language. This usually requires several courses in
programming and is not customary for linguists to achieve
the level of knowledge necessary to develop efficient tools.
We propose a declarative language, following the same idea
behind the development of SQL in the 70s [7], that will easily
allow a linguist to choose from a set of predefined functions,
formats and if necessary to orchestrate the preprocessing and
enrichment functions performed over the text from a set of
transformation operations.

V. ARCHITECTURE & IMPLEMENTATION

The architecture of the proposed language is shown in
Figure 2. The user will submit language statements to the com-
piler. The compiler will process each element of the statement
and will generate its output as a completely independent and
self-sufficient Java program (an executable jar package). This
newly generated program receives a text to process and will
follow the properties and flow stated by the user in the original
language statement.

The compiler is implemented using JFlex and Cup [8]. The
output of the compiler is a Java program composed of a main
executable class, along with a set of packaged libraries for
each of defined components: text reading (file, console, url),
text preprocessing (stopwords, stemming, tokenization), en-
richment (hashtag and emoticon expansion, duplicated words,
idiomatic phrases) and the tagging output (xml, json, text).
The idea is to developed a framework with auto discover

components (probaby using OSGi1), so the end user can
automatically expand the set of available features just by
dropping a jar into a predefined folder. Components will be
identified by a type and artifactId, which can be referenced
later by the user in their sentences.

Once the user’s statement has been validated and verified
by the compiler, the program automatically generates a Java
package. This executable jar is the user-defined preprocessor
and tagger. The user is able to execute this jar and pass a
source text. As a result, the outcome of the executable is a
new file in the tag format specified by the user, where each
token is preprocessed and tagged. The driving force behind the
language design phase was to make it as simple as possible.
Next, the main components of the language are presented.

Fig. 2. Architecture of the proposed platform. The end user submits language
statement and gets a Java parser back.

VI. LANGUAGE SPECIFICATION

The designed language falls within the category of declar-
ative languages, whose aim is to reduce the level of coding
and technical expertise needed to interact and create language
statements [7]. To make it easy to learn, the language’s
reserved words are similar to commonly used linguistic terms.
Table I shows the main language keywords.

The language allows a user to specify the source for the
tagged text and the format of the tagged output text. Out of
the box, FILE, CONSOLE and URL sources are supported and
JSON, XML and TEXT output formats are supported. The user
is able to DEFINE the name of the generated jar file. The user

1The OSGi specification describes a modular system and a service platform
for the Java programming language that implements a complete and dynamic
component model. Management of Java packages/classes is specified in great
detail.



is also able to define which type of TOKENIZER is going to
be used by the generated preprocessor.

TABLE I
LANGUAGE RESERVED WORDS

Keywords
TAG FROM USE

DEFINE TRANSFORM()
FORMAT IF() THEN

TOKENIZER SWITCH()

There are two types of functions which give the language
its text processing capabilities. The first type are parsers which
try to recognize a string of text received from the tokenizer
against a predefined dictionary. For this type the user can
specify which dictionary to USE. The other type of function
are transformer functions, that operate on a token and might
produce a new string of text as a result of applying the trans-
formation. The language is designed in a modular fashion such
that if any new transformer or parser function is implemented,
it can be added easily to the language and be used with
the TRANSFORM(function) command. Transformations also
allow adding custom variables to be mapped to the output.
These are added if the transformation was successfully applied.

There are two other conditional structures that might affect
the execution flow of the tagging process. First, an if statement
(without an else clause), which verifies if a predefined variable
took an specific value in a previous transformation. The body
contained inside the if clause should be executed only for
tokens that have a “variable” with a specific desired “value”.
The other possible conditional is a switch statement. It receives
as parameter a predefined variable. It follows the usual logic
from a switch in most imperative languages. Depending on
the value, different actions will be taken. We present now a
couple of examples to show how the language would work.

VII. EXAMPLES

In this section we present two small examples to show
possible use cases of the language and its potential as a
tool for creating custom taggers without requiring advanced
programming skills.

A. Example 1

The first example is shown in Figure 3. It features a
statement that will generate a basic parser that will tokenize
by removing white spaces. Line 1 states that the source for the
text to be tagged comes from a file. For the generated program
this means that it will expect a file path as a parameter of
the program or it will prompt in the console for one. Line
2 defines the generated program name. Line 3 defines the
format of the output of the program as XML, where the root
node name will be in this case “experiment1” (name implies
the program’s name). The values in parenthesis are the nodes
that will be added to each of the token nodes in the output.
Line 4 defines that the text will be tokenized using white

spaces as the delimiter character. Line 5 defines that the default
dictionary will be used when looking for the tokens. Lastly,
line 6 defines the only transformation within this statement.
It defines that a transform of type stemmer will be applied
to all the tokens. In this particular case the stemmer to be
used will be the snowball-stemmer. It also shows the custom
variables feature. Two additional properties will be added to
those tokens to which the lemmatization transformation was
successfully applied.

Fig. 3. Simple example of basic white space remover with stemming parser.

The expected output of a program generated with this
statement after receiving a text is shown in Figure 4. Notice
that all the tokens have the nodes stated in the XML format
definition. Also notice that the lemmatization nodes are added
only to the second token, which being a conjugated verbal
form, its stem is the verb in infinitive form.

Fig. 4. Expected output of parsing the text “He runs.” with a program
generated with the statement shown in Figure 3.

B. Example 2

The second example includes the conditional statements
feature as shown in Figure 5. This time, line 1 expects the text
to be parsed from the command line. Line 3 shows the other
available format, JSON, adding the same attributes as before,



however in this case we can decide if the generated JSON
string should have an array as its root element. Line 5 uses a
different dictionary this time. Line 6 defines another type of
transformation, text enrichment, in this case to recognize if a
token is a hash-tag. Lastly line 7 conditionally applies another
transformation to each token, expanding the hashtag into
tokens, but it applies it only if the previous hashtag-recognizer
transformation was successfully applied to the token.

Fig. 5. An example of a statement with conditional statements.

The output generated by a program created from this
statement is shown in Figure 6. Notice the array as the root
element of the JSON string.

Fig. 6. Expected output of parsing the text “He runs #Healthy” with a program
generated with the statement from Example 2.

VIII. CONCLUSION

This paper presents the preliminary results of a declarative
language created to allow linguists and researchers in general
to generate customized text processing and tagging applica-
tions to be used in Natural Language Processing tasks.

The described platform compiles language statements, sim-
ilar to an SQL statement, and produces a Java program that
upon execution will consume text and will preprocess, enrich

and tag it. The program will follow the order and generate
the output as stated by the user in their statement, including
conditional transformations, effectively allowing the user to
orchestrate the text analysis flow at execution time.

The language will allow users without knowledge of pro-
gramming to create their own analysis tools without needing
a computer scientist or programmer by their side. This should
increase the productivity and the flexibility of NLP research
in groups without access to these type of resources.

IX. FUTURE WORK

The current work in progress is the incorporation of the
POS tagging definition within the scope of the language. We
foresee a whole new set of keywords within the language for
defining when and how POS should be done with the provided
text. Next, we want to expand the platform to include a com-
mand line application that researchers can use to employ the
language. Accessibility can also be expanded by developing
a web service based platform that will provide the program
generation service online for free. Lastly, performance analysis
and completeness evaluations need to be done in order to
improve the language specification and implement feedback
obtained from early users.

ACKNOWLEDGMENTS

This work was done as part of the Natural Language
Processing Research Group from the Computer Science Grad-
uate Studies Program, thanks to all the members for their
continuous support and feedback. The authors would also
like to thank professor Luis Quesada, from the Computer
Science department, for allowing his students to work on this
project as part of their Compilers course. Lastly, our gratitude
to the Research Center on Information and Communication
Technology for their support and guidance.

REFERENCES

[1] N. I. F. J. D. (eds.), Handbook of natural language processing, 2nd ed.,
ser. Chapman Hall/CRC machine learning pattern recognition series.
Chapman Hall/CRC, 2010.

[2] S. L. E. Alexander Clark, Chris Fox, The Handbook of Computational
Linguistics and Natural Language Processing (Blackwell Handbooks in
Linguistics), 1st ed., ser. Blackwell Handbooks in Linguistics. Wiley-
Blackwell, 2010.

[3] B. R.-N. Ricardo Baeza-Yates, Modern Information Retrieval: The Con-
cepts and Technology Behind Search, 2nd ed., ser. ACM Press Books.
Addison Wesley, 2010.

[4] [Online]. Available: https://gate.ac.uk
[5] P. L. P. M. Carreras X, Chao I, “An open-source suite of language

analyzers,” Fourth International Conference on Language Resources and
Evaluation, 2004.

[6] [Online]. Available: http://lucene.apache.org/solr/
[7] D. D. Chamberlin and R. F. Boyce, “Sequel: A structured english query

language,” in Proceedings of the 1974 ACM SIGFIDET (Now SIGMOD)
Workshop on Data Description, Access and Control, ser. SIGFIDET ’74.
New York, NY, USA: ACM, 1974, pp. 249–264. [Online]. Available:
http://doi.acm.org/10.1145/800296.811515

[8] S. Hudson. Cup: Lalr parser generator for java. [Online]. Available:
http://www2.cs.tum.edu/projects/cup/


