
Parallelization of a Stellarator Simulation Code in
Plasma Physics

Luis Diego Chavarrı́a
School of Computing

Costa Rica Institute of Technology
luchavarria@ic-itcr.ac.cr

Esteban Zamora, Iván Vargas
School of Physics

Costa Rica Institute of Technology
estebanzp84@yahoo.es

ivargas@tec.ac.cr

Esteban Meneses
Advanced Computing Laboratory

Costa Rica National High Technology Center
School of Computing

Costa Rica Institute of Technology
esteban.meneses@acm.org

Abstract—There are multiple applications of plasma. To better
understand the fundamental characteristics of plasma, physicists
at Costa Rica Institute of Technology built a plasma confinement
device, code named SCR-1. This device was paired with a
simulation code. The computer program emulates the dynamics
of plasma as it is confined within SCR-1. This program is
computationally intensive. To alleviate the performance demand,
it was necessary to apply high performance computing machinery.
In this paper we present the work on improving the performance
of the this application by implementing vectorization and paral-
lelism through distributed and shared memory. We also include
experimental results that display acceleration factors higher than
30X. Additionally, we show speedup results for weak and strong
scaling experiments.

Keywords—Plasma physics, stellarator, simulation, parallelism,
vectorization.

I. INTRODUCTION

A stellarator is a device to confine toroidal plasma that uses
effects arising in the absence of toroidal symmetry to maintain
the magnetic configuration without the need for current drive
[1]. The concept is characterized by two contradictory features
in relation to its counterpart concept tokamak: its relative easy
operation and its complexity in design and construction. This
motivated the Plasma Group of the Costa Rica Institute of
Technology in the year 2009 [9] to start the development of
the Stellarator of Costa Rica 1 (SCR-1), with the objective of
improving the engineering of the design of a small 2-field
period modular stallarator. The SCR-1 has twelve modular
cooper coils that produce magnetic fields that confine the
plasma (see Fig. 1). These magnetic fields are important to
define the best electron cyclotron frequency heating (ECH)
system and they are also needed to evaluate the confinement
of the device [10].

In the SCR-1 verification process, it was necessary to
program a code named Biot-Savart Solver for Computing and
Tracing magnetic fields (BS-SOLCTRA). Written initially in
Matlab, the code simulates a 3D stationary magnetic field
using a Biot-Savart law and a reduced model of the twelve
modular coils. Currently, BS-SOLCTRA is an essential tool
in the development of SCR-1 and its results are present in
three international contributions (one scientific paper and two
conferences) [8] [11] [7]. Because of performance demands,
BS-SOLCTRA was migrated to C++, splitting the tool into two
modules: the computationally heavy one in C++ and a light one
responsible of drawing of the magnetic fields in Matlab. In this

Fig. 1: CAD drawing of SCR-1 coils and vacuum vessel [9]

paper we present the work made to improve the performance of
the C++ module through parallelization of the code by using
MPI and OpenMP in the Kabré supercomputer at the Costa
Rica National High Technology Center.

This paper is organized as follows. Section II provides
a background of the initial state of the code, how it works,
its composition and its implications in the SCR-1. Then the
methodology on the parallelization of the code is shown in
section III. Section IV presents the results of the execution
on the Kabré supercomputer and the analysis of the different
experiments that we run and the configuration to achieve
optimal performance. And finally the conclusions are presented
in section V.

II. BACKGROUND

Initially, the code was completely developed in Matlab.
After realizing how computational demanding it was, the
simulation code was migrated to C++. This code implemented
a fourth order Runge-Kutta’s method based on [2] and [5] for
tracing of paths in a magnetic field. At high level, before the
magnetic fields calculations, the code loads the information of
the twelve modular coils, one Cartesian point per grade. This
information needs to be loaded only once and remains constant
throughout the entire execution.

After loading the coil information, the tool calculates ên,
the unit vector along each segment of each coil [4]. This value
is calculated as the difference between the next point and the
current point divided by the norm of the current point:



ên = Pn+1−Pn

norm(Pn)

Once the coil information is loaded and the ên for every
point of the coils, a loop is executed to get the Runge-Kutta
calculation. This loop keeps its flow following the algorithm
in Fig. 2. Note that the calculation of ên is made only once
for all the execution. This is because the coils are fixed
and, consequently, the ên are same for all the Runge-Kutta
calculations.

P0 ← StartPoint
loop

K1 ← MAGNETIC FIELD(P0)
P1 ← K1

2 + P0

K2 ← MAGNETIC FIELD(P1)
P2 ← K2

2 + P0

K3 ← MAGNETIC FIELD(P2)
P3 ← K3 + P0

K4 ← MAGNETIC FIELD(P3)
P0 ← P0 +

K1+2∗K2+2∗K3+K4

6
end loop

Fig. 2: Algorithm for the fourth order Runge-Kutta

The starting point of the loop in Fig. 2 is taken as the start
point of the trajectory of the particle for which we want to
calculate the magnetic fields.

The composition for the magnetic field calculation is given
by two nested loops where the code executes a set of operations
based on the given point, the information of the coils initially
loaded, and the ên is calculated at the beginning of the
simulation. The result of each iteration is taken as a point
of the magnetic field of the current trajectory. This result is
saved to a file to load and visualize all of them in Matlab.

III. METHODOLOGY

The C++ sequential implementation of the algorithm in
Fig 2 was used as the starting point. This sequential version
was defined as a reference code for later developments. There-
fore, results between the sequential version and any parallel
version had to be equivalent. Since this original version of
the algorithm implemented in C++ was a migration from
Matlab, it was aimed to match every operation in the Matlab
code in C++. Because of this, a cleanup and refactorization
of the code was also necessary to provide a more flexible
ground to attempt parallelization of the functions. Besides,
additional functionality was added to facilitate the usage of
the simulation.

A. Computational Model

The main goal of this work is to run a simulation on a
parallel computing system. We understand such a system as a
collection of n nodes connected through a high-speed network.
Although the topology of the network usually has an impact on
performance, we ignore such property and assume that every
node can communicate with every other node.

Each node is conceived as a multicore processor. Since
the cores could be hyper-threaded or not, we say that each

multicore process will have c computational workers. Those
workers within the same processor share a common memory
space. In total, the system contains p = n × c processing
elements. Hence, p describes the size of the system in terms
of its computational capacity. Each core has an internal level
of parallelism exposed to the programmer: vectorization units.
These hardware components allow the same operation to be
applied to multiple operands and represent a broadly available
feature in current computer architectures.

B. Parallel Programming

1) Vectorization: The first step of the parallelization of the
code was to reorganize the data structures with the aim of
using vectorization. This is a single-instruction-multiple-data
(SIMD) approach, where the compiler takes operations in loops
to use the VPU (Vector Processing Unit) instead of the regular
ALU. How this is performed by the compiler depends on the
ISA available in the processor. On a code basis, the compiler
might detect where to vectorize, but also, the programmer can
explicitly indicate where and how to add vectorization to the
application.

2) Shared Memory Programming (OpenMP): We used
shared-memory programming to provide parallelism at the
core-level. This strategy assumes that all cores within the same
node can access a common memory address space. The usual
implementation of this strategy is to create a computational
thread on each core.

There are several libraries to write multithreaded code. We
chose OpenMP (Open Multi Processing) to program nodes. It
is composed by a set of compiler directives: pragmas that hints
to the compiler that certain pieces of codes can be parallelized.
There is a wide range of directives in OpenMP. However,
we concentrated on a few directives that bring substantial
performance benefits if appropriately used in the right type
of programs. In particular, the pragma parallel establishes
a parallel region that is executed by multiple threads. That
is where all parallelism starts. Pragma for precedes a loop
and distributes independent iterations of the loop among the
running threads. Finally, pragma simd signals a loop that has
to be vectorized.

3) Distributed Memory Programming (MPI): We used dis-
tributed memory programming to provide parallelism across
the system. This is the node-level parallelism. At this level,
the usual implementation is to create a computational process
in each node. We chose the Message Passing Interface (MPI)
standard to implement our parallel code. MPI is a library to
use message-passing [6] between the different processes. Since
this approach assumes distributed memory, not all processes
have to run on the same computer. Instead you might a cluster
with the processes being executed in different nodes.

The MPI library has a set of more than 500 functions to
exchange messages between the processes that are running [3].
That includes functions for operations such as send, receive,
and broadcast, and more advanced operations like gather, scat-
ter, and reduction. The MPI library also provides operations for
process synchronization, such as barriers, and provides options
for synchronous or asynchronous message passing. Another
requirement of MPI is that a program cannot being executed
on its own: it needs of a set of wrappers.



C. Performance Measures

To understand how the parallel implementation performs,
we resort to the traditional indicators speedup and efficiency.
Let us define W as the total amount of work a simulation must
perform to achieve its goal. In our case this could mean the
total number of operations necessary to compute the magnetic
fields of all the trajectories in the input. Let T1 represent the
total execution time of the sequential version of the simulation
while performing work W . Let Tp represent the total execution
time when using p processing elements. The ratio T1/Tp is
known as speedup. Ideally, if p processing elements are used,
we expect a speedup of p. Reality, however, presents a much
different speedup curve, usually deviating from the identity
function as p increases. The overhead of parallel computing
(thread/process creating and destruction, syncronization) and
the sequential part of the code usually explain why linear
speedup is hard to achieve. The other performance descriptor
is the efficiency, defined as the ration of speedup and p, and
ranges between 0 and 1. Intuitively, efficiency represents the
utilization of the system (is the fraction of the resources that
are being effectively used in a parallel system). The ideal value
for efficiency is 1, but that value can be hardly achieved. When
computing speedup and efficiency, the size of the problem is
usually kept the same while the number of processing units
is increased. So, W remains constant as p increases. That is
called strong scaling. On the other hand, weak scaling we
when W increases linearly with p. In a weak-scale experiment,
the total amount of work is usually Wp.

D. High Performance Computing System

We collected the results using the Kabré supercomputer,
hosted at the Costa Rica National High Technology Center
(CENAT). We used specifically the queue compound by nodes
made up of Intel Xeon Phi (codenamed Knights Landing).
Each of these nodes have 64 cores, each with 4 hyper-threads.
Kabré has the Intel’s version of both MPI and OpenMP
libraries installed, to take maximum advantage of the hardware.
The parallel implementation of the simulation was submitted
through Kabrés’ job submission system. Every data point
reported is the average of 10 executions.

E. Parallel Application

Both libraries, MPI and OpenMP, were used on the par-
allelization of the different executions of the Runge-Kutta
method. Since we have a defined amount of processes being
executed, when the program is iterating on the initial set of
trajectories given by the user, we check if the number of
iteration corresponds to the “my” MPI rank (MPI unique
identifier number of the process). To do this, we calculate
the module of the current particle count with the MPI rank.
If it equals zero, the given process executes the Runge-Kutta
algorithm in Figure 2; if not, the process skips it until it gets
one that correspond to its rank.

IV. RESULTS AND ANALYSIS

To test and benchmark the parallelization of the code,
we have separated the results in two sections: vectorization
improvements only (section IV-A), and OpenMP and MPI
(section IV-B). On both sets of experiments, we chose one

point and iterated n times using it depending on the experi-
ment. We use the same StartPoint in Fig. 2 in all iterations,
ensuring that all the iterations have the same work load in all
the experiments.

A. Vectorization Only

We isolated the vectorization by turning the OpenMP and
MPI off and comparing the execution time of the application
with and without (-no-vec and -qopenmp-stubs com-
piler options) vectorization.

The results obtained from this experiment were that without
vectorization the code lasts in average 829.28s, and with
vectorization, 97.93s. These results show that only with the
vectorization provided on the KNL in the Kabré supercom-
puter, we can get an acceleration of 8.47 with the vectorized
version of the application.

B. OpenMP and MPI

For the OpenMP and the MPI experiments, we show the
results of the speedup for weak scaling and for strong scaling
(section III-C). These experiments are contained into a single
KNL socket, consequently, we have a maximum number of
simultaneous workers of 256 (4 threads on 64 cores). Also,
for both experiments we changed the number of MPI ranks
and OpenMP threads, spreading the threads across all cores.

Fig. 3: Speedup results of BS-SOLCTRA on the KNL for the
weak scaling scenario

The weak scaling results are shown on Fig. 3. We clarify
that the line for 32 OpenMP threads does not have 16 MPI
ranks because that would exceeded the total threads available
in one KNL, which would generate an overbook of resources.
In this graph we can see that the lines follow an increment
curve, some with a slope higher than others.

In Fig. 3 we see that the speedup does not get increased
as the number of threads is increased. We can see that for
OpenMP=2 (2 OpenMP thread per MPI rank) is the lower
one with incremental breaks on each MPI rank increment. The
same happens for the case of OpenMP=4. On the contrary, for
OpenMP=8, the incremental break stops when the MPI=16,
and even this point has a lower speedup than OpenMP=4. This
effect becomes worst for OpenMP=16. For this case we have
an incremental break until MPI=4, where the slope changes to
be lineal. For the OpenMP=32 the slope is always lineal.

From the results in Fig. 3, we see the common factor for
these breaks as the moment when the number of threads per



core is increased from 1. So we can conclude that speedup
rises gradually while the the number of threads per core is
kept to 1, then it passes to be lineal.

We finally got that the higher speedup for weak scaling
when MPI=16 and OpenMP=4.

Fig. 4: Speedup results of BS-SOLCTRA on the KNL for the
strong scaling scenario

Once having the results for weak scale, we ran the experi-
ments for strong scale, which results are in Fig. 4. We can note
that this graph follows the same trend that the graph in figure 3,
where we observe a slope rises gradually in the speedup until
the threads per core is increased from 1, where the increment
changes to lineal.

V. CONCLUSION AND FUTURE WORK

In this paper we presented a work made to improve the per-
formance of the BS-SOLCTRA application using parallelism.
We showed how the performance can be improved by taking
advantage of hardware for vectorization. Finally, we showed
the results of the speedup on experiments for weak scaling and
strong scaling and, based on those results, we conclude that
the BS-SOLCTRA application is scalable.

Physicists at Costa Rica Institute of Technology are plan-
ning to build another Stellarator with 24 coils instead of 12. We
propose as future work the adaptation of the BS-SOLCTRA to
this new model and to explore and analyze the results with that
configuration. Also, we will compare those results with this
work to explore the behavior of the parallel implementation of
the algorithm at higher workloads.

REFERENCES

[1] A. H. Boozer, “What is a stellarator?” Physics of Plasmas, vol. 5, p.
1647–1655, May 1998.

[2] A. S. Chai, “Error estimate of a fourth-order runge-kutta method with
only one initial derivative evaluation,” in Proceedings of the April
30–May 2, 1968, Spring Joint Computer Conference, ser. AFIPS ’68
(Spring). New York, NY, USA: ACM, 1968, pp. 467–471. [Online].
Available: http://doi.acm.org/10.1145/1468075.1468144

[3] G. Hager and G. Wellein, Introduction to High Performance Computing
for Scientists and Engineers, 1st ed. Boca Raton, FL, USA: CRC Press,
Inc., 2010.

[4] S. P. Hanson, James D.; Hirshman, “Compact expressions for the
biotsavart fields of a filamentary segment,” Physics of Plasmas, July
2002.

[5] H. A. W. L. F. Shampine, “Comparing error estimators for runge-kutta
methods,” Mathematics of Computation, vol. 25, p. 445–455, July 1971.

[6] P. Pacheco, An Introduction to Parallel Programming, 1st ed. San
Francisco, CA, USA: Morgan Kaufmann Publishers Inc., 2011.

[7] R. Solano-Piedra, A. K¨hn, V.I. Vargas, F. Coto-Vı́lchez, M.A. Rojas-
Quesada, D. López-Rodrı́guez, J. Sánchez-Castro, J. Asenjo and J.
Mora., “First MHD equilibrium characterization and electromagnetic
waves interaction on hydrogen plasma in the SCR-1 Stellarator,” in
4th European Physical Society Conference on Plasma Physics (EPS),
Shanghai, China, 26 - 30th June 2017.

[8] R. Solano-Piedra, V. I. Vargas, A. Köhn, F. Coto-Vı́lchez, J. Sanchez-
Castro, D. Lopez-Rodrı́guez, M. A. Rojas-Quesada, J. Mora, and J.
Asenjo, “Overview of the SCR-1 Stellarator,” in 23rd IAEA Technical
Meeting on the Research Using Small Fusion Devices (23rd TM
RUSFD), Santiago, Chile, March 2017.

[9] V. I. Vargas and J. Mora and J. Asenjo and E. Zamora and C. Otarola
and L. Barillas and J. Carvajal-Godı́nez and J. González-Gómez and C.
Soto-Soto and C. Piedras, “Implementation of Stellarator of Costa Rica
1 SCR-1,” 2016.

[10] V. I. Vargas, J. Mora, J. Asenjo, E. Zamora, C. Otárola, L. Barillas,
J. Carvajal-Godı́nez, J. González-Gómez, C. Soto-Soto, and C. Piedras,
“Constructing a small modular stellarator in latin america,” Journal of
Physics: Conference Series, vol. 591, no. 1, p. 012016, 2015. [Online].
Available: http://stacks.iop.org/1742-6596/591/i=1/a=012016

[11] V.I. Vargas, J. Mora, C. Otarola, R. Solano-Piedra, J. Asenjo, F. Coto-
Vı́lchez, J. Sanchez-Castro, L.A. Araya-Solano, A.M. Rojas-Loaiza,
J.M. Arias-Brenes, J. F. Rojas, J.I. Monge, N. Piedra-Quesada, D.
López- Rodrı́guez, M.A. Rojas-Quesada and L. Barillas, “Engineering
overview of the Fusion Research in Costa Rica: SCR-1 Stellarator and
Spherical Tokamak MEDUSA-CR,” in 27th IEEE Symposium on Fusion
Engineering (SOFE), Shanghai, China, June 2017.


