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I. INTRODUCTION

The Python programming language is widely used in scien-
tific computing. Five rankings on the popularity of program-
ming languages with different methodologies [1], [2], [3], [4]
and [5] list Python in position 1, 4, 2, 3 and 3, respectively.
Those rankings considered the number of results returned by
web searches, Github projects, questions tagged in StackOver-
flow, open job positions, among other variables. As stated in
[6], in 2015 approximately 10% of all computer jobs at Texas
Advanced Computing Center were Python applications. Also,
there exists specific modules for a wide diversity of scientific
disciplines. Because of this strong code base and ease of use,
Python is commonly the first language learned by engineering,
basic and applied science students.

In the current context, multi-core and many-core processors
represent industry’s answer to Moore’s Law technical halt.
New code must be parallel to take advantage of modern
architectures, but at the moment, there is no obvious answer
on how to offer parallelism in the Python programming lan-
guage through idiomatic abstractions. Python’s community has
generated a plethora of projects providing parallelism trough
modules, function calls, job submission, annotations, just-in-
time compilers, and run time systems.

Considering its popularity, growth potential, and absence of
de facto standard for parallel computing, providing parallelism
in the Python programming language is a promising research
field. An important step to propose effective solutions is
understanding which strategies have already been deployed
and its results. In this work, we present an extensive survey
of projects that aim to provide parallelism in Python.

Other similar works focus on comparing usability and per-
formances for some parallel tools, for example: [7] compares
Python together with Cython, Numpy, Numba and Global Ar-
rays against Fortran code solving a CDF problem; [8] qualifies
usability and performance of parallel extensions for high level
languages; [9] presents an end-to-end argument for Python as
a suitable language in high performance environments. To the
best of our knowledge, this is the first work to survey and
classify Python parallel tools in an extensive manner.

II. METHODOLOGY

In order to understand the different approaches delivered by
the Python community and which combination of character-
istics are common, a systematic review of published projects
was carried out. It included indexed publications: IEEExplore,
ACM Digital Library, SciencieDirect, SpringerLink, as well

as Google Scholar and commercial Google. “Parallel python”
was used as search key phrase. Results were sorted by date in
descending order from 2016 until 1993. After analyzing close
to fifty works, we established the following inclusion criteria:

1) The project provides some kind of parallelism to the
Python programming language.

2) The project aims general programming rather than
domain-specific.

Because interpreted languages commonly have lower per-
formance than compiled languages, many projects intent to
improve python performance by using ahead-of- and just-in-
time compiling [10], [11], [12], or tuning distributed platforms
for launching Python [6], [13]. Clearly these strategies are
interesting for the high performance computing community.
Nevertheless, this paper focuses on the problem of how to
write parallel code with Python, and the previously discussed
strategies were excluded.

A total of 35 projects were included, and classified accord-
ing to the following criterion:

• Execution strategy: Interpreted, binary binding, com-
piled. This refers to how code written by programmer
is finally executed.

• Parallel paradigm: Data, Task, Message Passing,
MapReduce. How parallelism is exposed to the program-
mer, not necessarily how it is implemented.

• Vector Data oriented: If the project fundamentally offers
parallel vector structures.

• Language support: Full, or Subset. Which version of
python is supported (Python 2 or Python 3) and if the
whole language is supported or only a subset.

• Code modifications: Function calls, Job submission,
Annotations, None. How a programmer must modify a
given serial program to run in parallel using the tool.

• Target platform: Symmetric multiprocessing (SMP),
Clusters, GPU. The particular architecture for which the
tool was designed.

III. RESULTS AND ANALYSIS

Table I presents the result of classifying each project. First
column presents project name and reference. The second col-
umn classifies each project according to its execution strategy.
60% of projects use the interpreter to provide parallelism,
commonly this implies the project itself is also written in
Python. This decision simplifies and accelerates development,
but makes harder to overcome natural limitations of Python,



TABLE I
CLASSIFICATION OF TOOLS THAT PROVIDE PARALLELISM IN THE PYTHON PROGRAMMING LANGUAGE.

Project Execution Parallel Vector data Language Code modifications Parallel platform Latest release
strategy paradigm oriented support

Bohrium [14] Interpreted Data Yes Full, Python 2 None SMP, GPU, Clusters 0.3, Apr-2016
PyStream [15] Compiled Data Yes Subset, Python 2 None GPU 0.1, Jul-2011
Dask.array [16] Interpreted Data Yes Full, Python 3 FunCall SMP, Clusters 0.13.0, Jan-2017
PupyMPI [17] Interpreted MsgPsg No Full, Python 2 FunCall SMP, Clusters 0.9.5, May-2011
Papy [18] Interpreted Task No Full, Python 2 JobSub SMP, Clusters 1.0.8, Nov-2014
GAiN [19] Binary binding Data Yes Full, Python 2 FunCall Clusters 1.0, 2009
Global Arrays [20] Binary binding Data Yes Full, Python 2 FunCall Clusters 5.5, Aug-2016.
mpi4Py [21] Binary binding MsgPsg No Full, Python 2-3 FunCall SMP, Clusters 2.0.0, Oct-2015
Pythran [22] Compiled Data Yes Subset, Python 3 Annotations SMP 0.7.6.1, Jul-2016
ASP [23] Binary binding Data, Task No Full, Python 2 JobSub SMP, GPU 0.1.3.1, Oct-2013
Dispel4py [24] Interpreted Data, Task No Full, Python 2-3 JobSub SMP, Clusters 1.2, Jun-2015
PMI [25] Interpreted Data No Full, Python 2-3 FunCall SMP, Clusters 1.0, Dec-2009
Jit4OpenCL [26] Compiled Data Yes Full, Python 2 Annotations SMP, GPU 1.0, 2010
MRS [27] Interpreted MapRed No Full, Python 2-3 FunCall Clusters 0.9, Nov-2012
Pydron [28] Interpreted Task No Subset Annotations Clusters –
CoArray [29] Interpreted Data Yes Full, Python 2 FunCall Clusters 2004
PyCuda, PyOpenCL [30] Binary binding Data Yes Full, Python 2-3 FunCall SMP, GPU 2016.2, Oct-2016
SCOOP [31] Interpreted Task No Full, Python 2-3 JobSub SMP, Clusters 0.7.1.1, Ago-2015
DistArray [32] Interpreted Data Yes Full, Python 2-3 JobSub SMP, Clusters 0.6, Oct-2015
Dispy [33] Interpreted Data, MapRed No Full, Python 2-3 JobSub SMP, Clusters 4.6.17, Sep-2016
IpyParallel [34] Interpreted Data, Task No Full, Python 2-3 JobSub SMP, Clusters 5.3.0, Oct-2016
PyRo [35] Interpreted MsgPsg No Full, Python 2-3 Annotations, FunCall Clusters 4.50, Nov-2016
Parallel python [36] Interpreted Task No Full, Python 2-3 JobSub SMP, Clusters 1.6.5, Jul-2016
JUG [37] Interpreted Task No Full, Python 2-3 Annotations, FunCall SMP, Clusters 1.3.0, Nov-2016
Multiprocessing [38] Interpreted Task, Data No Full, Python 2-3 FunCall SMP, Clusters 3.6, Jul-2016
Copperhead [39] Binary binding Data Yes Subset, Python 2 Annotations GPU 2013
Celery [40] Interpreted Task No Full, Python 2-3 Annotations, FunCall SMP, Clusters 4.0.0, Nov-2016
Disco [41] Interpreted MapRed No Full, Python 2 Annotations, FunCall SMP, Clusters 0.5.4, Oct-2014
Spark [42] Binary binding Task No Full, Python 2-3 FunCall Clusters 2.0.2, Nov-2016
Theano [43] Binary binding Data Yes Full, Python 2-3 FunCall SMP, GPU, Clusters 0.8.2, Apr-2016
Numba [44] Compiled Data Yes Full, Python 2-3 Annotations SMP, GPU 0.29.0, Oct-2016
Joblib [45] Interpreted Task No Full, Python 2-3 JobSub, Annotations SMP 0.10.3, Oct-2016
Hadoopy [46] Binary binding MapRed No Full, Python 2 JobSub Clusters 0.5.0, Jun-2012
PyMW [47] Interpreted Task No Full, Python 2 FunCall Clusters 0.4, Jun-2010
Pyfora [48] Compiled Data No Subset, Python 2 None Clusters, SMP 0.5.8, Set-2016

like the global interpreter lock (GIL). Following interpretation,
26% of the projects use binary binding to execute code
written by programmer. Projects like NumPy use this strategy
to improve performance. This gives the possibility to use
well-established parallel computing technology developed for
other languages and releasing the GIL, but interfaces must
be carefully designed to provide enough functionality in an
idiomatic way. Finally, 14% of the projects attempt to compile
Python code to machine language. This requires type inference
or just-in-time compiling, in general, those projects try to
provide parallelism in a transparent way.

Third column classifies projects according to their parallel
paradigm. Data is the most common choice, 50% of the
projects offer data parallelism. The second most common
choice is Task parallelism, with a 31% of the projects. The fact
that data and task parallelism add up to 81% of the projects
possibly respond to the nature of most common parallel jobs.
In scientific computing, data sets are efficiently represented
as multidimensional vectors, so it makes sense to provide
data parallelism. Other applications require multiple functions
executing concurrently, for example: web servers, multimedia
display, gaming; so, it is useful to provide an abstraction for
tasks. Message Passing and MapReduce are also present, with
10% and 9% of the projects. They are not a very popular
choice, possibly because Message Passing forces programmers
to think about low level abstractions like processes, and

this breaks idiomatic Python. Similarly, MapReduce forces a
programming pattern that does not fit many parallel problems.

Fourth column states if the project fundamentally offers
parallel vector structures and holds an strong correlation with
third column. 37% of the projects provide vectors as principal
structures, all of them expose data parallelism, however, the
other way around is not true. Fifth column shows project
Language Support. 86% of projects supports the full language.
This column holds a relation with second column, projects
that attempt compiling Python code to machine language
commonly narrow Python support and because the majority of
projects are interpreted, and written in Python itself, support-
ing the full language is easy. Also, this column states if Python
3 is supported, supporting both is very common, even so, 40%
of projects only support Python 2, and plans to upgrade to
Python 3 are mixed, strongly depending on project continuity.

Sixth column talks about Code modifications. 43% of the
projects use Function call and 27% use Job submission, this
holds a relation with parallel paradigm in column three. Func-
tion calls are suitable for implementing universal operations
over a collection of data and job submission makes explicit
the creation of a new task. When attempting compiling code
to machine language or using parallel library as a backend
(CUDA, for example) Annotations (21%) or not change at
all (9%) are preferred, this also holds a relation with column
three, the majority of those projects provide data parallelism.



Fig. 1. Co-occurence matrix for characteristics in table I. Scale indicates the
Number of projects that share the same characteristic

Seventh column shows target Parallel platform. This classi-
fication is not mutually exclusive, many projects run on two
or three platforms, percentages are then pondered accordingly.
51% of the projects support cluster computing, while 36%
support SMP. Python’s standard library provides Multiprocess-
ing and Threading modules, an attempt to create idiomatic
abstractions for parallel programming. Those modules sim-
plify creation of new instances of interpreters and hardware
threads. Because of that, many projects exploit shared memory
and clusters over the Python interpreter. For example, some
projects create multiple instances of the interpreter in different
computers, creating a cluster of interpreters, others exploit
threads in shared memory platforms. Again, this holds a
relation with column two, using the interpreter to provide
parallelism is a popular choice. GPUs represent 13% of the
projects. Exploiting GPUs from Python is more difficult, they
have a separate memory from principal memory and are
programmed with hardware-dependent libraries. In general,
projects targeting GPUs use CUDA or similar libraries as
backend, so they are classified as Compiled or Binary binding.

Finally, eighth column presents latest release date: version
number, month and year. 48% of projects released a new
version the last year and 60% in the past two years, also,
46% of projects have a stable release, that means, a version
number bigger than 1.0. This suggests there is an important
effort of the community to address the problem.

These relations could be represented with a co-occurrence
matrix as shown in Figure 1. Vector data oriented and
Language support were excluded from the representation to
avoid visual cluttering. One interesting observation is that
even when Interpretation, Data parallelism, and Function call
are the preferred design decisions, they do not co-occur
together frequently. Interpreted and Clusters exhibit an strong
co-occurrence. As explained above, Multiprocessing module,
from Python’s standard library, simplifies creating multiple

instances of the Python interpreter, in consequence, many
projects written in Python will target clusters. In the same
line of Interpreted, Task and Function call show relevant
co-occurrence, suggesting that when implemented above the
Python interpreter, offering Task parallelism and exposing
parallelism trough Function calls is common, but the observed
co-occurrence of both characteristics is not high, meaning
Function calls are not used to implement Task parallelism.
Function call and Clusters are another co-occurrence, if you
create many instances of the Python interpreter, it is simple to
interact with them trough function calls, possibly manipulating
a collection or invoking a remote procedure.

Also, it is interesting to analyze the absence of some
co-occurrences. Compiled only occurs for Data parallelism
through Annotations or not change to code, and only targets
SMP and GPUs; all other fields are empty. That suggests those
projects are trying to take advantage of architectural features
like vectorization to process data in parallel by mapping
operations to high optimized BLAS functions or common
kernels.

IV. CONCLUSIONS

An extensive survey of projects that provide parallelism for
the Python programming language was carried out. Projects
were classified according to how code is executed, how par-
allelism is exposed, if vectors are the principal data structure,
language support, how code must be modified to fit the
projects, which platform does the project targets and latest
dated of release.

The most common characteristics are: using Python inter-
preter to run the code or using external code (binary binding),
offering data parallelism or task parallelism, if data parallelism
is offered in general the main data structure will be vectors.
Majority of projects support full language specification, but
compiled projects tent to exclude some part. Parallelism is
exposed as function calls or explicit job submission. Targeting
SMP and clusters platform is common, the latter more than
the former.

REFERENCES

[1] N. Diakopoulos and S. Cass, “Interactive: The top pro-
gramming languages 2017,” http://spectrum.ieee.org/static/
interactive-the-top-programming-languages-2017, 2017, accessed:
08/07/2017.

[2] T. S. BV, “Tiobe index for may 2017,” https://www.tiobe.com/
tiobe-index/, 2017, accesed: 05/23/2017.

[3] P. Carbonnelle, “Pypl popularity of programming language,” http://pypl.
github.io/PYPL.html, 2017, accesed: 05/23/2017.

[4] S. O’Grady, “The redmonk programming language rankings:
January 2017,” http://redmonk.com/sogrady/2017/03/17/
language-rankings-1-17/, 2017, accesed: 05/23/2017.

[5] J. Patel, “The 9 most in-demand programming lan-
guages of 2017,” http://www.codingdojo.com/blog/
9-most-in-demand-programming-languages-of-2017/, 2017, accesed:
05/23/2017.

[6] T. Evans, A. Gómez-Iglesias, and C. Proctor, “Pytacc: Hpc python
at the texas advanced computing center,” in Proceedings of the 5th
Workshop on Python for High-Performance and Scientific Computing,
ser. PyHPC ’15. New York, NY, USA: ACM, 2015, pp. 4:1–4:7.
[Online]. Available: http://doi.acm.org/10.1145/2835857.2835861



[7] A. Basermann, M. Röhrig-Zöllner, and J. Illmer, “Performance and
productivity of parallel python programming: A study with a cfd
test case,” in Proceedings of the 5th Workshop on Python for
High-Performance and Scientific Computing, ser. PyHPC ’15. New
York, NY, USA: ACM, 2015, pp. 2:1–2:10. [Online]. Available:
http://doi.acm.org/10.1145/2835857.2835859

[8] L. Humphrey, B. Guilfoos, H. Smith, A. Warnock, J. Unpingco, B. Elton,
and A. Chalker, “Evaluating parallel extensions to high level languages
using the hpc challenge benchmarks,” in 2009 DoD High Performance
Computing Modernization Program Users Group Conference, June
2009, pp. 410–415.

[9] M. Mortensen and H. P. Langtangen, “High performance python for
direct numerical simulations of turbulent flows,” Computer Physics
Communications, vol. 203, pp. 53 – 65, 2016. [Online]. Available:
http://www.sciencedirect.com/science/article/pii/S0010465516300200

[10] J. Akeret, L. Gamper, A. Amara, and A. Refregier, “Hope: A python
just-in-time compiler for astrophysical computations,” Astronomy
and Computing, vol. 10, pp. 1 – 8, 2015. [Online]. Available:
http://www.sciencedirect.com/science/article/pii/S2213133714000687

[11] R. Garg and J. N. Amaral, “Compiling python to a hybrid execution
environment,” in Proceedings of the 3rd Workshop on General-
Purpose Computation on Graphics Processing Units, ser. GPGPU-3.
New York, NY, USA: ACM, 2010, pp. 19–30. [Online]. Available:
http://doi.acm.org/10.1145/1735688.1735695

[12] B. Ren and G. Agrawal, “Compiling dynamic data structures in python
to enable the use of multi-core and many-core libraries,” in 2011
International Conference on Parallel Architectures and Compilation
Techniques, Oct 2011, pp. 68–77.

[13] Yu Feng and Nick Hand, “Launching Python Applications on Peta-
scale Massively Parallel Systems,” in Proceedings of the 15th Python in
Science Conference, Sebastian Benthall and Scott Rostrup, Eds., 2016,
pp. 137 – 143.

[14] T. Blum, M. R. B. Kristensen, and B. Vinter, “Transparent gpu execution
of numpy applications,” in Proceedings of the 2014 IEEE International
Parallel & Distributed Processing Symposium Workshops, ser. IPDPSW
’14. Washington, DC, USA: IEEE Computer Society, 2014, pp. 1002–
1010. [Online]. Available: http://dx.doi.org/10.1109/IPDPSW.2014.114

[15] N. Bray, “Pystream: Compiling python onto the gpu,” in Proceedings of
the 10th Python in Science Conference, 2011, pp. 79–82.

[16] M. Rocklin, “Dask: Parallel computation with blocked algorithms and
task scheduling,” in Proceedings of the 14th Python in Sciencie Confer-
ence (SciPy 2015), 2015, pp. 130–136.

[17] R. Bromer, F. Hantho, and B. Vinter, “pupympi - mpi implemented in
pure python,” in Proceedings of the 18th European MPI Users’ Group
Conference on Recent Advances in the Message Passing Interface, ser.
EuroMPI’11. Berlin, Heidelberg: Springer-Verlag, 2011, pp. 130–139.
[Online]. Available: http://dl.acm.org/citation.cfm?id=2042476.2042492

[18] M. Cieslik and C. Mura, “Papy: Parallel and distributed data-processing
pipelines in python,” in Proceedings of the 8 th Python in Science
Conference (SciPy 2009), 2009, pp. 41–49=8.

[19] J. Daily and R. R. Lewis, “Using the global arrays toolkit to reimplement
numpy for distributed computation,” in Proceedings of the 10 th Python
in Science Conference (SciPy 2011), 2011, pp. 23–29.

[20] J. Nieplocha, B. Palmer, V. Tipparaju, M. Krishnan, H. Trease, and
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