
1

Using Community Detection Algorithms to Identify
Clusters of Ranks in an MPI Application Based on

the Communication Matrix
Manfred Calvo Sánchez∗, Esteban Meneses†

School of Computer Science, Costa Rica Institute of Technology
Email: ∗calvomanfred@gmail.com, †emeneses@ic-itcr.ac.cr

Abstract—In the MPI parallel programming model, communication
remains the bottleneck that prevents applications to achieve greater
performance and scalability. Due to this problem it is important to
know the behavior of this communication in each application. For
this reason, we propose the use of community detection algorithms
to identify from the communication matrix the clusters of ranks that
maximize intracluster communication and minimize intercluster
communication. The aim of this project is providing another tool to
identify how you can improve the performance of a MPI application.

Keywords—Communication Patterns, Message-Passing, Parallel
Applications, Modularity.

I. INTRODUCTION

Many scientific applications have been developed to solve psy-
chical, chemistry, and aerodynamic problems. They make a lot
of complex mathematical calculations that require a great power
of processing. For this reason, many of these applications have
been parallelized with the goal of having a better performance
and, therefore, they can make more complex calculations.

Many of these applications use the standard of parallel pro-
gramming MPI (Message Passing Interface) for their develop-
ment. This work proposes to make use of MPI to communicate
different tasks that work together to accomplish a common
objective [1]. Many times these applications work with the same
set of data and they make use of messages to deliver the data
that is required to make calculations.

Some works have found that communication is the main cause
of bottlenecks in the applications that use the model MPI and, in
general, in other models that use communication [2], [3], [4]. For
that reason, some works have been done to make improvements
on applications and implementation of the model MPI in order to
reduce the role communication plays in efficiency and scalability
of applications.

Based on these findings, it is important to know and identify
what is the communication behavior in each application. With
this information, we could have a better vision of the application
and at the same time we could determine which optimizations
we can make either at the application level, architecture, or
implementation of the MPI standard. [1].

For this reason, it is proposed to use community detection
algorithms to identify, in a communication matrix, which rep-
resents the flow of bytes transmitted between each of the ranks
participating in one execution of the application, groups of these
ranks that are tightly coupled. In other words, the objective is
identify which clusters of ranks maximize intracluster communi-
cation and minimize intercluster communication. This is done in
order to provide a new tool that allows to make decisions, when
optimizing an application that utilizes MPI standard.

II. METHODOLOGY

To developed this work we extracted a communication matrix
from a scientific application implemented with the protocol MPI.
The communication matrix of an MPI application represents
the data flow between each of the ranks that belong to the
application. This matrix registers how many messages and how
many bytes are transmitted between each pair of ranks of
the application through the use of point to point operations
and collective operations [5], [6], [7]. Then, we processed this
communication matrix to extract different groups of processes
based on community detection algorithms. In this section we
explain in more detail how the work was developed and how it
can be apply to other MPI applications.

A. Modifying mpiP to extract communication matrix

The first step was to modify a profiler application called
mpiP [8]. This application lets extract some information about
different MPI operations during the execution of the application,
for example, how many calls of each operation were executed
and also the portion of the execution time the application spent
in a specific operation. Although, this information is useful, it
is not possible to get the amount of bytes transmitted between
each of the process during the execution of the application. This
application can not obtain the communication matrix from its log
because it was initially developed for analysis of communication
scalability of an application [5]. To make it possible, we modified
mpiP to add that functionality by changing some modules and
adding some code to obtain the information necessary to build
and save the communication matrix at the end of the execution.

B. Linking and extracting a communication matrix from scien-
tific application

Once modified the mpiP profiler, the next step was to extract
the communication matrix from the application MPI. To achieve
this, the first thing was to link mpiP with the application to
be executed. To link mpiP in the application we added some
libraries and flags in the compilation command of the application.
They were added to let know mpiP that the application need
to be profiled in execution time. After linked these libraries
in the compilation command, it was necessary to execute the
application MPI with a special script that is generated after
compile mpiP and it is in the bin folder of mpiP. This script
specify the same flags than the normal command for executing
an application MPI but instead of execute the application in
the normal way the script sets environment variables that mpiP
needs to work. Finally we had to wait until the execution of
the application finished to get the communication matrix in a



2

plain text file. It is worth noting that this plain text file is
always generated by mpiP in the server where is running the
root node of the application MPI. We can see an example of one
communication matrix in Figure 1. The communication matrix
is represented using a heat map where each axis represents
the ranks in the application MPI and the color represents the
number of bytes transmitted between ranks. So for example the
main diagonal of the matrix is completely black because the
communication between a node and itself is zero.

C. Generating the graph that would be inserted in the community
detection algorithms

An undirected weighted graph is the most common input for
detection of community algorithms. However, our communica-
tion matrix is a directed weighted graph with edges between each
pair of nodes. For that reason we converted the communication
matrix in a undirected weighted graph. We will now explain why
the communication matrix is a directed weighted graph and how
it was converted it into an undirected weighted graph. The value
at index (i, j) in the communication matrix represents the number
of bytes wij sent from rank i to rank j. From the description
of the values in the matrix is easy to see that the matrix is the
adjacency matrix of a graph in which each vertex represents a
rank and the edges represent the number of bytes transmitted
between ranks.

Likewise, the graph is directed because there is one edge from
node i to node j and also one edge from node j to node i.
Therefore is necessary to convert this directed weighted graph
into an undirected weighted graph.

We assumed that the graph G = (V,E) represented the
communication matrix and wij represents the number of bytes
transmitted from rank i to rank j. Based on that assumption was
possible to create a new graph G′ = (V ′, E′) where V ′ = V and
E′ = {(i, j) | i < j ∧ i, j ∈ V }. Further we defined the number
of bytes transmitted between rank i and rank j in any direction
as w′

ij = wij + wji. After this conversion, G′ is an undirected
weighted graph as required, since there is only one edge between
each pair of ranks (i, j) and the weights are summed from the
number of bytes sent from rank i to rank j with the number of
bytes sent from rank j to rank i.

The graph G′ is an ideal representation of the network for
the community detection algorithms and it allows to apply
the community detection algorithms to the chosen scientific
application.

D. Running community detection algorithm over the graph

The last step was to run the community detection algorithm
over the undirected weighted graph obtained it in the previous
step. The community detection algorithms, try to find groups
of nodes with more or and/or better interactions among its
members than between its members and the remainder network.
One of the most important concepts in this type of algorithms is
modularity. Modularity is a measure to know how good a division
of the network is [9]. Using this metric the community detec-
tion algorithms would maximize intracluster communication and
minimize intercluster communication. To execute this type of
algorithms we used a python library called igraph [10]. This
library contains the most common used community detection
algorithms and let manage graphs in a very easy way. In this
work, we used the fast greedy algorithm because its complexity
is very good and the results could be obtained faster than with

the other algorithms. This algorithm merges individual nodes into
communities in a way that greedily maximizes the modularity
score of the graph. It can be proven that if no merge can increase
the current modularity score, the algorithm can be stopped since
no further increase can be achieved [11]. In other hand we created
a python script to read the output from mpiP that contains the
communication matrix and generate the communities detected by
the fast greedy algorithm, together with its respective metric of
modularity. In this script we also executed the previous step that
converted the communication matrix in a undirected weighted
graph.

Figure 1: Communication matrix with 125 ranks in the
network.

III. EXPERIMENT AND RESULTS

We chose a scientific application called kernel conjugate gra-
dient to show how to generate clusters of ranks using community
detection algorithms starting from a communication matrix. This
application is describes next.

A. Kernel Conjugate Gradient

The application kernel conjugate gradient belongs to the
NAS parallel benchmarks. This application solve an unstructured
sparse linear system by the conjugate gradient method. A conju-
gate gradient method is used to compute an approximation to the
smallest eigenvalue of a large sparse symmetric positive definite
matrix. This kernel is typical of unstructured grid computations
because it tests irregular long distance communication, employ-
ing unstructured matrix vector multiplication. This benchmark
uses the inverse power method to find an estimate of the largest
eigenvalue of a symmetric positive definite sparse matrix with a
random pattern of nonzeros [12].

B. Detecting Communities in kernel conjugate gradient

We applied the fast greedy algorithm to the communication
matrix of the kernel conjugate gradient to see what groups are
generated by the fast greedy algorithm. The experiments were
executed changing the number of processors to know what was
the effect of that. The results are shown in Figure 2. Each element
in the axis represents a rank of the application and each color in



3

the figure represents a community detected within the network
by the algorithm.

It can be seen in Figure 2 that the elements of each community
are consecutive ranks. Also, it is notable that these communities
are very symmetric because each of them has pretty much the
same number of elements. The only exception to this rule is the
detection of communities for 512 ranks. In this case, there are
some communities with different size. This is shown in Figure 3,
where x-axis represent the number of the community and y-axis
represent the number of elements in the community.

Based on Figures 2 and 3 is clear that the communities are
well define and is clear how could be the split of the network.

Number of processors Modularity Number of communities

64 0.65 8
128 0.69 8
256 0.75 16
512 0.77 16

Table I: Modularity and number of communities to each
number of processors in kernel conjugate gradient.

Table I shows the modularity and number of communities
detected by the fast greedy algorithm for different number of
processes. The results shown that when we added more processes
in the application, the number of groups and the modularity grew
up. Because the community detection algorithms use modularity,
this measure can be use to compare the results. Some authors
have mentioned that a good value of modularity is usually
between 0.3 and 0.7 [9], [11]. As the results are in that range
these groups are good to describe a partition of the network that
maximize intracluster communication and minimize intercluster
communication.

IV. CONCLUSION

We applied the fast greedy community detection algorithm
to the communication matrix of kernel conjugate gradient. The
analysis showed well define communities that can help to split
the network in groups of ranks that could be together to improve
latency of the communication. Also, some of the partitions of
this network had a good modularity between 0.6 and 0.7.

The results showed that the fast greedy algorithm detected
communities with good modularity and structure. Further, this
algorithm is stable because it detected good communities when
the number of processes in the network was changed.

The application showed well defined communities and it was
easy to find this communities with detection algorithms. Besides,
in some cases the communities detected were symmetric because
they had the same number of elements.

The communication matrix was proven to give insight into
communication in parallel applications.

V. FUTURE WORK

One important thing to do is to use the kernel conjugate
gradient and apply the fast greedy algorithm in a network with
more nodes to see if the behavior is maintained. On the other
hand, it is important to explore more applications and apply these
methods in real applications that are been using in real time to
know if the work proposed can be applied in the real life.

After applying these algorithms to a real applications, it might
be interesting to implement a special network that could represent
exactly the communities detected by the algorithms and see if
the split of the network can help to improve the application
performance.

In the future, it would be interesting to add more point-to-
point and collective operations to identify how this can affect
the detection of communities. Further, in some cases it would be
interesting to filter the operations used to detect the communities
to identify if some could be feeding noise to the algorithms.

Finally, it is important to try with more community detection
algorithms to compare their results and see if it is possible to
get better or different communities and have different point of
views of how the network can be divided in groups of processes
to achieve better performance in communication.

REFERENCES

[1] (1993) mpi: A standardized and portable message-passing system.
[Online]. Available: http://mpi-forum.org/

[2] A. Ovcharenko, O. Sahni, C. D. Carothers, K. E. Jansen, and M. S. Shep-
hard, “Subdomain communication to increase scalability in large-scale
scientific applications,” Proceedings of the 23rd International Conference
on Supercomputing, pp. 497–498, 2009.

[3] N. Jain and Y. Sabharwal, “Optimal bucket algorithms for large mpi collec-
tives on torus interconnects,” Proceedings of the 24th ACM International
Conference on Supercomputing, pp. 27–36, 2010.

[4] S. Li, C. Hu, J. Zhang, and Y. Zhang, “Automatic tuning of sparse matrix-
vector multiplication on multicore clusters,” Science China Information
Sciences, vol. 58, no. 9, pp. 1–14, 2015.

[5] P. C. Roth, J. S. Meredith, and J. S. Vetter, “Automated characterization
of parallel application communication patterns,” Proceedings of the 24th
International Symposium on High-Performance Parallel and Distributed
Computing, pp. 73–84, 2015.

[6] E. Meneses and L. V. Kalé, “A fault-tolerance protocol for parallel
applications with communication imbalance,” International Symposium on
Computer Architecture and High Performance Computing (SBAC-PAD),
2015.

[7] A. Mazaheri, A. Jannesari, A. Mirzaei, and F. Wolf, “Characterizing loop-
level communication patterns in shared memory,” Parallel Processing
(ICPP), 2015 44th International Conference on, pp. 759–768, 2015.

[8] (2013) mpip: Lightweight scalable mpi profiling. [Online]. Available:
http://mpip.sourceforge.net/

[9] M. E. J. Newman and M. Girvan, “Finding and evaluating community
structure in networks,” Physical Review, vol. E 69, no. 026113, 2004.

[10] (2015) igraph: The network analysis package. [Online]. Available:
http://igraph.org/

[11] A. Clauset, M. E. J. Newman, and C. Moore, “Finding community
structure in very large networks,” Phys. Rev. E, vol. 70, p. 066111, Dec
2004.

[12] (2012) Nas parallel benchmarks. [Online]. Available: https://www.nas.
nasa.gov/publications/npb.html

http://mpi-forum.org/
http://mpip.sourceforge.net/
http://igraph.org/
https://www.nas.nasa.gov/publications/npb.html
https://www.nas.nasa.gov/publications/npb.html


4

Figure 2: Communities detected by the fast greedy algorithm on different number of processors in conjugate gradient.

Figure 3: Communities’s size in conjugate gradient using fast greedy algorithm.


	introduction
	methodology
	Modifying mpiP to extract communication matrix
	Linking and extracting a communication matrix from scientific application
	Generating the graph that would be inserted in the community detection algorithms
	Running community detection algorithm over the graph

	experiment and results
	Kernel Conjugate Gradient
	Detecting Communities in kernel conjugate gradient

	Conclusion
	Future Work
	References

