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San José, Costa Rica

Abstract—Cancer currently constitutes both a national and
worldwide health problem for the human population. General
scientific effort has been directed towards improving targeted
and personalized therapy, which are characterized by making an
intelligent use of the patient’s genomic blueprint in order to make
more informed treatment decisions. NIH’s project, Genomic
Data Commons (GDC), provides an openly available online data
repository which stores great diversity of cancer related data
from different cases (patients). This study leverages patterns
found in gene expression data for the identification of potential
therapeutic targets. Data was restricted to highly expressed genes
from cases of breast invasive carcinoma. A Hopfield network
(a type of recurrent neural network) was used for clustering
purposes. Preliminary tests subdivided the cases into two clusters,
where four highly expressed genes better characterized one
cluster from the other. Some of these genes are reported in
the literature, indeed, as biomarkers for breast cancer. These
results suggest that attractor states of Hopfield networks might
provide means for discovering or better understanding potential
therapeutic targets when treating a particular cancer subtype.

Index Terms—Cancer, Therapeutic Targets, Neural Networks,
Machine Learning, Pattern Recognition, Bioinformatics.

I. INTRODUCTION

Cancer has been a mainstream human race health problem
for years. It mainly causes an erratic behavior at the genetic
level in the cells, which in turn triggers abnormal cell growth
and proliferation through the tissues. Currently, it constitutes
one of the main causes of death both nationally (Costa Rica)
and globally. Current trends about mortality rates are really
alarming [1], which justifies interdisciplinary and transdisci-
plinary efforts involving research fields like Computer Science,
Electric Engineering, Mathematics, Statistics, Pharmacology,
Biotechnology, Genetics, among many others; in favor of
developing advances in the state of the art.

A fundamental idea present in state of the art literature
is that cancer treatment, in general, becomes more effective
if genetic and epigenetic features of patients are exploited
for making more informed decisions. This is usually called
“targeted therapy” [2], because it aims at disrupting spe-
cific molecular agents (certain proteins or miRNA for exam-
ple) that are playing some regulatory role in cancer evolu-
tion/proliferation. Drugs need to target these agents which
vary across patients and tumor types. These methods can

be easily contrasted with traditional cytotoxic chemotherapy,
which has proven to be more harmful and riskfull for the
patient. The previous statement could be easily explained by
citing some adverse effects of chemotherapeutic compounds
like: myelosuppression (bone marrow suppression), mucositis
(ulceration of the mucous membranes lining the digestive tract)
and alopecia (hair loss). In favor of improving the “targeted”
approach, data analysis and good prediction models are needed
[3], which constitutes a current research trend in the field and
it is the aim of this study.

There are several factors that also motivate and contribute
to this research effort:
• Data science advancements and state of the art machine

learning techniques.
• Latest generation genomic and sequencing techniques in

molecular biology and public repositories of genomic
information.

• Collaborative interdisciplinary and transdisciplinary ef-
forts.

This paper describes some preliminary tests that illustrate
the potential of the Hopfield networks [4] to model cancer as
a dynamic system, in which its stable states (called attractors)
might prove useful for detecting and understanding biomarker
genes (which could also serve as therapeutic targets). In
particular, the authors of [5], already explored the capacity
of Hopfield networks for clustering data into cancer subtypes,
whose performance was comparable to other algorithms like
k means. However, GDC data was not used and the aim of
the authors was not exactly at determining therapeutic targets.

In section 2, the methodology is described, focusing on
aspects like data acquisition, treatment and the modeling
approach to the problem. In section 3, some preliminary results
are showed. In section 4, some other ideas that are worth
exploring as future research are mentioned. Finally, in section
5, conclusions are shared.

II. METHODOLOGY

A. Used Database

Given its current popularity, diversity and quality, The
Cancer Genome Atlas (TCGA) database (now part of the



NIH’s Genomic Data Commons project1) was chosen as the
data source for this study. The TCGA project alone has been
able to gather and organize data of around 11.000 patients
involving 33 different tumor types (including 10 rare types of
cancer). The project was funded by the US government and
supervised by the National Cancer Institute’s Center of Cancer
Genomics. The total data is more or less 2.5 petabytes.

In summary, the GDC DB is a property oriented graph
database which organizes a great diversity of files. Informa-
tion could be classified as genomic, clinical or biospecimen
depending of its nature. Genomic data categories include: se-
quencing data, copy number variation, DNA methylation, sim-
ple nucleotide variation, genomic profiling and transcriptome
profiling. Each data category uses its own data file formats (for
example .tsv for transcriptome profiling and .bam for aligned
reads). Also each data category can be further subdivided into
different data types. Transcriptome profiling has 3 subtypes:
Gene Expression, Exon Expression and miRNA Expression.
For this study only Gene Expression data was used.

B. Chosen Cancer Cases

Given the results of [3] it could be argued that some cancer
studies might be restricted to particular cancer types without
loss of generality (because most tumors of the same organ
tend to cluster together by their genome-wide characteristics).
This gave this study the opportunity to concentrate on a single
tumor type before trying to generalize results to other tumor
types. Cases of breast cancer proved to be a good subset of
the total data for use in this study. In general, it is one of
the most studied cancer types and it also has relevance in
the national context. GDC contains more than 1000 cases for
breast invasive carcinoma.

C. Used Data Type

Results in [5] suggest that gene expression data alone gives
good results for characterizing cancer sub types. This can
be intuitively argued, given that gene expression is the final
result of complex interactions of gene regulatory networks.
So overall it could be considered a good predictor. However,
as indicated in [3] even better results could be obtained if
expression data is used alongside other *-omics features like
single number variation, mutation data and methylation values
(all provided by the TCGA).

For the scope of this project it was convenient to initially
work with expression data. Gene expression data is modeled
as a matrix of numeric values where patient cases are observa-
tions (rows) and genes are features (columns). Let M be a gene
expression matrix, the value at row i, and column j (labeled
as Mij) represents a relative value of how much gene j is
expressed in case i. Higher values indicate a higher protein
synthesis rate for that gene. The data is high dimensional
as there are thousands of genes that are profiled for gene
expression values.

1https://gdc.cancer.gov/

TABLE I
ARGUMENTS PASSED TO GDCQUERY FUNCTION

Name of Parameter Argument

project “TCGA-BRCA”
data.category “Transcriptome Profiling”

data.type “Gene Expression Quan-
tification”

workflow.type “HTSeq - Counts”

D. Computational Platform and Fetching of the Data

The implementation platform for the Hopfield network’s
clustering using TCGA data was the R Statistical Computing
Environment.

The software package TCGABiolinks [6] from the Biocon-
ductor project2 was chosen for accessing and fetching the data
from the GDC/TCGA via its web API. Other two Bioconduc-
tor packages with similar functionality where also evaluated
(RTCGA and RTCGAToolbox), however TCGABiolinks
was favored in the end because of its wider use statistics and
higher commit rate at its GitHub repository.

The fetching of the data was relatively simple. The argu-
ments passed to the GDCQuery function are showed in Table
I.

E. Data Cleanup, Exploration and Preprocessing

After being loaded and prepared, the matrix of data con-
tained the gene expression (numerical) value for 60488 genes
across 1222 cases. Then some basic descriptive measures were
calculated. In particular, the distribution of the means of ex-
pression values for each gene was calculated. The distribution
was extremely right skewed. The majority of genes showed
expression rates that were extremely tiny in comparison to
other ones. Just to give an idea, the maximum value was
554437.8 and the median was at 2.3.

Given that the magnitude of the differences between some
genes was so huge, it was opted to apply a log transformation
to the data.3 After this transformation, the distribution of
mean values for genes was still right skewed. However the
differences between genes were a lot easier to visualize. See
Figure 1.

The next step was particularly important. It was decided
to limit this preliminary study to only those highly expressed
genes (with a mean value higher than 5). There were two
reasons. The first one is that it can be hypothesized that,
indeed, it is possible to characterize tumors in an effective
way using only those genes that are highly expressed (even
if there are also inactive genes that play a transcendental role
in cancer development). The second reason is purely method-
ological, as the analysis of all the genes was posing time and
resource limitations. To illustrate this, Hopfield networks need

2Bioconductor brings a repository for packages specifically aimed at the
analysis of biological data. See http://www.bioconductor.org/

3One unit is added in order to avoid log(0) values, given that are genes
that are not expressed at all.



Fig. 1. Distribution of gene expression means for TCGA-BRCA cases after
applying a log transformation to the data.

to allocate space for a matrix in Θ(n2), where n is the number
of dimensions. Using all genes results approximately in 25Gb
of memory consumption. For the immediate resources, it was
unfeasible, even making use of packages for memory mapped
files like Bigmemory.

Finally the values where centered and scaled in the same
way that it is described on [5]. The resulting matrix contained
only 8236 rows (genes) by 1222 columns (cases), making the
analysis feasible for a mainstream computer.

F. Hopfield Networks

A Hopfield network4 is a type of recurrent neural network
with n neurons, where n is also the number of dimensions
of the data. Each neuron acts as an input and output unit,
which results in a matrix W of approximately n2 weighted
links representing the network (basically, a complete graph).
The network can be trained using Hebbian learning with the
following formula:

W =
1

m

m∑
k

pkp
T
k − I (1)

Here, m is the number of patterns used to train the network.
The formula calculates the sum over the outer products of
the pattern vectors pk, then normalizes values and sets the
diagonal with zero values. The result, the matrix W , contains
the numerical values of the network links, where Wij is the
weight of link connecting neuron j to neuron i.

After being trained, the network can be used to “recall”.
This means that given a new input pattern p, the network
can associate the pattern p with the closest pattern q that it
remembers. This ability to reconstruct stored patterns from
similar input is the reason Hopfield networks are considered
a way of implementing associative memory.

The “recall” phase works as follows. The process is divided
into different time steps t. At any time step t′, each neuron
has a binary state si ∈ {−1, 1}, i ∈ 1, . . . , n. The states for
the next time step are calculated as follows:

4For a comprehensive introduction to the Hopfield model and other asso-
ciative models, please refer to [7].

s
(t′+1)
i = sgn

 n∑
j

Wijs
(t′)
i

 (2)

The sgn is defined in the following way:

sgn(x) =

{
+1 x > 0

−1 x ≤ 0
(3)

Given an input pattern p = (p1, . . . , pn) for the “recall”
phase, the initial state of the network is calculated as s0 =
(sgn(p1), . . . , sgn(pn)). Then, equation 2 is run for the t
iterations. It is guaranteed that if t→∞, then the state of the
network will converge to a stable state with minimum energy.
Describing the definition of the energy function is outside the
scope of this article. However it should be noted that these
“energy” and “stable state concepts” is what allows Hopfield
networks to model the evolution of cancer as a dynamic
system, where the stable states are where gene expression
levels tend to converge. In [5] it is argued that stable states
correspond to gene signatures that characterize different cancer
subtypes. In this study we take a similar approach but using
only high expressed genes to describe these signatures.

For implementation purposes, an example code for the
course “Foundations of Neural and Cognitive Modeling” of
the University of Amsterdam was used as base5. Some minor
modifications were made. These include substituting uses of
base matrix R objects with Matrix S4 objects, more suited
for high computation and efficient representation. Also, the
outer product of equation 1 is calculated with the function
tcrossprod, which overall is more efficient for this case.

The tests performed consisted on first training a Hopfield
network using all cases of breast invasive carcinoma. Then
the “recall” phase was effectuated for each pattern individually
using a maximum of 100000 time steps or iterations. Numbers
less than this proved to be insufficient for the majority of cases
to converge to a stable state.

III. RESULTS

The tests effectuated for the study are preliminary in nature,
and lack a formal experimental design. However they proved
to be useful for gaining some insight into the potential of the
methods described previously.

After the tests, 384 cases converged to a particular attractor
state a1, 448 cases converged to a second attractor a2, and the
rest of the 387 cases did not converge to a stable state (even
more than 1000000 iterations are needed for that). From the
look of the patterns it can be seen that those 387 cases that did
not converge, after some more iterations, would have probably
converged to either a1 or a2.

One kind of unexpected result was that a1 and a2 were
vectors complementary to each other. That is, those compo-
nents equal to +1 in a1 were equal to -1 in a2 and vice-
versa. Like opposite poles. It remains to be confirmed if this

5http://www.illc.uva.nl/LaCo/clas/fncm13/assignments/computerlab-
week4/.



TABLE II
POTENTIALLY DETECTED THERAPEUTIC TARGETS

Gene Ensembl Code Relation to Cancer

GSTP1 Displays antiapoptotic ac-
tivity by interacting with
c-Jun NH2-terminal ki-
nase, a key regulator of
apoptosis.

CRYAB Downregulated for certain
clinical luminal B subtype
breast tumors.

KRT17 Blood-Based biomarker
for metastatic breast
cancer.

PPP1R1B Upregulated when breast
tumor cells are co-
cultured with ADSCs
cells.

behavior is expected when only two attractors are generated
by the network.

A quick inspection to these 2 attractor states revealed that
in either case, there were 4 components that differed from the
rest (8233). In the case of a1, 8233 components converged to
-1 and 4 to +1. In the case of a2, 4 converged to -1 and 8233
to +1.

A possible interpretation is that those 4 characteristic com-
ponents (that correspond to 4 genes) are good discriminators
in order to cluster the cases into two groups. The first group
of cases tend to evolve the gene expression values for those
genes towards very high values, while in the second group this
is not the case. It would require further experimentation and
feedback from experts in the biological subject to see if that
interpretation is completely valid.

The 4 distinctive genes are coded as GSTP1, CRYAB,
KRT17, PPP1R1B in the Ensembl database. Each one of
these is mentioned in the literature to have showed an altered
behavior in the context of breast cancer [8]–[11] (see Table
II), which in turn suggests them as possible candidates for
being biomarkers or therapeutic targets. From these, GSTP1
and KRT17 appear to show major relevance. These results
show the potential of using Hopfield networks stable states to
infer useful information that might be used in the development
of new targeted drugs for other less studied cancer types.

IV. FUTURE WORK

This preliminary study was restricted strictly to cases of
breast invasive carcinoma from The Cancer Genome Atlas. In
order to better assess the effectiveness of the tested method,
other cancer types could be explored.

Also there was a cutoff value (mean ≥ 5) for working only
with high expressed genes. The value 5 was chosen conve-
niently because it made the study feasible for the computing
resources at hand. Having more computing resources could
expand the study to consider a higher number of genes o
even the complete genome, however, it might be wiser to opt
for a better selection of features (e.g, considering genes with

higher expression variance or genes that code for transcription
factors).

There is also great interest on exploring the properties
of the Hopfield network attractors for modeling cancer as a
dynamic system. Could it be possible to infer new Hopfield
network attractors stable states which are non-cancerous? If it
is possible, then which genes should be specifically targeted
to maximize the probabilities of a certain state of the network
to converge to a non-cancerous state? These questions will be
probably explored in a future thesis research project.

V. CONCLUSIONS

This study lays at the intersection of several fields: ma-
chine learning, statistics and molecular biology. It is clearly
illustrated how interdisciplinary and transdisciplinary efforts
can aid in the comprehension, prevention and treatment of
cancer. The Hopfield network models cancer as a dynamic
system on which gene expression levels tend to converge to
stable states. These properties could aid us on the identification
of potential therapeutic targets, which could be used for
improving treatments. Also it should be kept in mind that these
models, if proven good in silico, should be tested in vitro as
a next step. The long term objective is to improve the quality
of life of persons in a noticeable way.
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