
LEVERAGING MODERN MULTI-CORE PROCESSORS FEATURES TO EFFICIENTLY DEAL WITH SILENT ERRORS, AUGUST 2017 1

Leveraging Modern Multi-core Processor Features
to Efficiently Deal with Silent Errors

Diego Pérez∗, Thomas Ropars‡, Esteban Meneses∗†
∗School of Computing, Costa Rica Institute of Technology

†Advanced Computing Laboratory, Costa Rica National High Technology Center
‡Univ. Grenoble Alpes, CNRS, Grenoble INPϕ , LIG, F-38000 Grenoble France

Abstract—Since current multi-core processors are more com-
plex systems on a chip than previous generations, some transient
errors may happen, go undetected by the hardware and can
potentially corrupt the result of an expensive calculation. Because
of that, techniques such as Instruction Level Redundancy or
checkpointing are utilized to detect and correct these soft errors;
however these mechanisms are highly expensive, adding a lot
of resource overhead. Hardware Transactional Memory (HTM)
exposes a very convenient and efficient way to revert the state of
a core’s cache, which can be utilized as a recovery technique. An
experimental prototype has been created that uses such feature
to recover the previous state of the calculation when a soft error
has been found. The combination of HTM, Hyper-Threading
and Memory Protection Extensions may further improve the
performance, applicability and confidence of our technique.

Index Terms—Hardware Transactional Memory, Hyper-
Threading, Replication, Soft Errors.

I. INTRODUCTION

Because of the power wall preventing single core proces-
sors manufactures from keeping the increase of frequency as
expected, multi-core processors are becoming more complex
systems on a chip. These systems are more prone to transient
errors compared to previous generations of processors, because
manufacturers continuously boost performance with higher
circuit density using really small transistor sizes and at the
same time achieving higher energy efficiency by operating at
lower voltages [1]. The problem turns even more serious since
a lot of these errors are not detected by the hardware (such
as bit flips) and can potentially damage the entire calculation.
Such silent errors are considered a major problem for future
very large data-centers and supercomputers [2]. There are
a wide range of causes for such faults in CPUs, including
dynamic voltage scaling, cosmic radiation, physical altitude
of the data center, power supply faults, among others.

There are two main challenges when dealing with soft
errors. The first one is being able to detect that an error
happened. The second is correcting the error and ensuring
that the final result of the calculation is correct. Instruction
Level Redundancy (ILR) is usually used at some level in
common solutions. Instructions are replicated and frequent
checks are placed to detect faults. In the case of Triplication,
two extra copies of the calculation are performed and a
majority vote is used each time to decide the correct result.
However, this technique is extremely costly adding typically

ϕ Institute of Engineering Univ. Grenoble Alpes

about 200% of resource overhead [3]. Recent contributions [1]
[4] tend to show that checkpointing techniques provide the
best compromise between transparency for the developer and
efficient resource usage. In theses cases only one extra copy
is executed, which is enough to detect the error. But, still the
technique remains expensive with about 100% of overhead.

To reduce this overhead, some features provided by recent
processors, such as hardware-managed transactions, Hyper-
Threading and memory protection extensions, could be great
opportunities to implement efficient error detection and recov-
ery. The pioneer work presented in [1] is a first step towards
leveraging hardware transactional memory for recovering ap-
plication state. The goal of this investigation is to explore
opportunities to reduce the cost of detection and rollback-
recovery mechanisms by combining the use of mentioned
features in current multi-core processors. For that, an ex-
perimental prototype has been built that detects and corrects
artificially injected errors. Such program uses hardware trans-
actional memory through Intel TSX technology as a recovery
mechanism when an error has been found.

The rest of the paper is structured as follows. The next
section describes some concepts that are necessary to un-
derstand properly the rest of the document; in Section III
the background and previous work are presented; Section IV
explains the details of the prototype that uses transactional
memory as a recovery mechanism; in Section V shows some
preliminary results of said prototype. Finally, the conclusions
and future work are discussed in Section VI.

II. CONCEPTS

A. Hardware Transactional Memory
Hardware Transactional Memory (HTM) follows the same

principles as database transactions, where a set of instructions
are managed as if they were just one instruction. If the trans-
action succeeds then every operation executed is committed to
the database. If not, every operation is reverted and the state of
the database remains the same as when the transaction began.
The difference with HTM is that the goal of a transaction is
not to commit changes to a database but to the main memory
of a processor. When a transaction begins, the values of
modified variables are stored in the cache and if no collisions
are detected then those changes are atomically committed to
RAM, so every other core can view these new results [5].

Transactional Synchronization Extensions (TSX) is the Intel
version of HTM and was proposed as part of the Haswell



LEVERAGING MODERN MULTI-CORE PROCESSORS FEATURES TO EFFICIENTLY DEAL WITH SILENT ERRORS, AUGUST 2017 2

Instruction set architecture [6]. This document focus on multi-
processors chips that have this feature, specifically on the
Intel Restricted Transactional Memory (RTM) interface, which
exposes a new set of primitives:

• xbegin, initializes a new transaction.
• xend, marks the current transaction as successful, and

therefore commits atomically the changes to RAM.
• xtest, tells if one is inside a transaction.
• xabort, explicitly causes an abortion of the current

transaction and restores the state of the core as it was
at the latest successful execution of xbegin.

Transactional Memory was originally proposed as a better
way to achieve high performance lock-based synchronization,
yet easy to implement, in applications with concurrent access
to shared memory. Intel TSX ensures the same results as hav-
ing a coarse-grained lock, but allows non conflictive operations
to occur without the delay that coarse grained locks would
have injected [7].

Internally in Intel TSX, transactions have a read and write
sets, to keep track of what has been consulted and modified,
such information is temporarily stored in L1 cache. The
execution model is optimistic, meaning it does not block (as
a mutex does) a concurrent execution of the code. Instead,
to detect conflicts in parallel transactions an optimized cache
coherency protocol is used; having two transaction with the
same memory location in their read sets does not cause an
abortion, but if one reads a variable that is also present in
another transaction’s write set, at least one transaction aborts.
If such thing happens (explicitly or implicitly) the execution
jumps to an abort handler (that has to be provided), where
usually the transaction is retried a number of times before
going to a fallback path where progress should be guaranteed,
in case the code cannot be executed transactionally [1].

Even though it is not its original purpose, Intel TSX also
provides strong isolation guarantees and a way to rollback
that can be utilized as a recovery mechanism. But, there are
several design choices that limit the use of this feature for fault
tolerance. First of all, Intel does not guarantee that a transac-
tion will eventually commit, even when applied to sequential
code [8]. Since it uses the core’s cache to temporarily keep
track of reads and writes, the amount of memory is limited to
the physical capabilities of the processor. Also there is a time
limit (based on the interval of timer interrupts) of how much
a transaction can last before it is aborted [1]. Lastly there are
“unsafe” operations (such as system calls) that force a core
to abort any active transactions [1]. Thus, the importance of a
fallback path is vital.

B. Hyper-Threading

Hyper-Threading Technology from Intel makes a single
physical processor appear as two logical processors; the phys-
ical execution resources are shared and the architecture state
is duplicated for the two logical processors. From a software
or architecture perspective, this means operating systems and
user programs can schedule processes or threads to logical
processors as they would on multiple physical processors.

From a micro-architecture perspective, this means that instruc-
tions from both logical processors will persist and execute
simultaneously on shared execution resources [9].

Hyper-Threading does not do much for single thread work-
loads, but when multiple threads can run in parallel there
may be a significant performance improvement, because it
ensures that when one logical processor is stalled the other
logical processing unit (on the same core) could continue to
make forward progress (without context switching). A logical
processor may be temporarily stalled for a variety of reasons,
including servicing cache misses, handling branch mispredic-
tions, or waiting for the results of a previous instruction [9].

C. Memory Protection Extensions (MPX)

Memory Protection Extensions from Intel include a set
of primitives for pointers bound checking, as well as new
registers for storing bounds data. Its original purpose is to
check that memory references defined at compile time do
not become a source of uncertainty at runtime due to buffer
overflows or underflows (either way the bounds are violated).
Such task is accomplished using new hardware features that
can be used by software. MPX main goal is a way to protect
memory deficiencies in unsafe languages [10].

Whenever a pointer is used, Intel MPX validates that the
requested memory reference is inside the pointer’s associ-
ated limits, hence preventing out-of-bound memory accesses.
Buffer overruns account for a considerable amount of all bugs
encountered in a typical C/C++ application [11].

III. PREVIOUS WORK AND BACKGROUND

This section presents and reviews how current solutions for
soft error management take advantage of modern multi-core
features. The vulnerabilities and/or limitations of each solution
are identified in order to establish our path to follow.

Intel TSX’s primarily target is synchronization and exhibits
several design restrictions that make the use of this technique
for recovery purposes not trivial [1]. Hardware Assisted Fault
Tolerance (HAFT) [1] relies on Instruction Level Redundancy
(ILR) to detect faults and HTM (Intel TSX) to correct them.
In order to accomplish fault tolerance, first it replicates the
instructions of the application and integrity checks are recur-
rently added. Once this step is performed the application is
wrapped in HTM-based transactions in order to be able to
recover from a fault. When an error is detected by the ILR
checks, the transaction is explicitly rolled back, the state of
the application is restored before the transaction began and
the execution is retried a fixed number of times until it is
re-executed without transactions.

The best effort approach in HAFT of retrying a transaction
a fixed number of times before trying again without using
HTM may be considered quite dangerous. If an error occurs
in this non-transactional moment ILR has no choice but to
permanently abort the execution of the program; this could
be worse than adding extra overhead by trying a different
recovery technique and ensuring a correct completion of the
application. Mostly this design choice in HAFT is driven
by the restrictions that Intel TSX currently exhibits. The



LEVERAGING MODERN MULTI-CORE PROCESSORS FEATURES TO EFFICIENTLY DEAL WITH SILENT ERRORS, AUGUST 2017 3

technique was originally thought for small critical sections
and therefore there are constraints that limits the use of the
feature. Intel TSX transaction size is limited by the CPU cache
size and by the timer interrupt interval; also there are a lot
of “unfriendly” instructions (signals/interrupts) that cause the
transaction to abort. HAFT therefore presents a “transactifica-
tion” algorithm that heuristically wraps the application code in
HTM-transactions, taking into account the limitations of Intel
TSX.

Oleksenko et al present another option to use Intel’s version
of hardware transactional memory as recovery mechanism
against transient errors [10]. They focus on errors caused by
bit-flips in data pointers, which can be catastrophic especially
if the pointer is not to a basic type but to a more complex data
structure, because it can potentially provoke a considerable
amount of data loss. Once an error of this sort is identified,
they explicitly roll back the current transaction using Intel’s
TSX feature.

In order to detect soft errors in pointers they use Intel
Memory Protection Extensions. This technology basically adds
a set of instructions for pointers bound checking. The main
idea for identifying errors in pointers lies in the fact that if a
fault occurs in a pointer, the new value will probably violate
the corresponding bounds. The authors mention that if more
than a single event upset (SEU) happens in the same pointer,
then it will be more probable to detect such incorrect state,
because the bound checking will more likely fail [10].

MPX original purpose is a way to protect memory limita-
tions in unsafe languages, like buffer overruns. Even though
the idea of using it for fault detection in pointers is quite novel
and ingenious, the authors in the paper [10] admit there are a
lot of subjects not yet explored that they have to keep working
on. Another drawback of the solution is that it only detects
pointer faults, making it a technique which has to be used
in coordination with another one in order to achieve a more
complete fault tolerance.

Another reference where HTM is used as a recovery mech-
anism is [12], Fault Tolerant Execution on COTS Multi-core
Processors with Hardware Transactional Memory Support.
This is a software/hardware hybrid approach which leverages
Intel TSX to support implicit checkpoint creation and fast
rollback. The authors combine a software-based redundant
execution for detecting faults with hardware transactional
memory to restore the state of the application if necessary.

The main idea of the paper is to redundantly execute each
user process and to instrument signature-based comparison
on function level. The error detection is allowed given the
loosely coupled execution of both processes, since processes
(not threads) are practically independent from each other. With
the encapsulation of blocks in transactions, error recovery is
realized. For an efficient comparison of both instances, for
each block a signature is created (which uniquely identifies
it) and shared from the master process to its duplicate. Before
committing the transaction, the locally calculated signature and
the leading process signature are compared and if an error is
detected a restart of the block is initiated [12].

This proposal has a disadvantage that HAFT also has,
in which since the use of TSX alone does not guarantee

that a non-conflictive transaction will eventually commit and
therefore random aborts of the whole application may occur.

IV. METHODOLOGY

A prototype has been created that leverages Intel’s Hardware
Transactional Memory to recover from artificially injected
errors and uses replication to detect them. Basically the
following happens, there is a global array of work, in which for
each entry a calculation (calculus function) must be performed.
Every thread created is assigned a range of this array to work
on, by the end the length of the array is divided as equally as
possible among the number of threads. This scheme represents
a very common way of designing parallel programs, multiple
values can be calculated this way. In the calculus function there
is a fixed probability that an error occurs (meaning the returned
result may differ in different executions of the same function
with the same parameters). The routine each threads executes
is a loop that iterates over the global array of work only in its
personal range. For each entry before executing the calculus
function twice (replication) a hardware memory transaction is
initiated. If both executions of the calculation differ then the
current transaction is explicitly aborted, causing all variables
that were modified in such iteration to revert its state to the
one they had before starting the transaction. Once in the error
handler routine, a transaction status is returned, which helps
identify possible causes of the transaction failure. Some of
these causes permit a transaction retry, for example if it was
explicitly aborted. If a retry is possible the iteration is executed
a fixed number of times (5 in the current implementation),
before trying again without transactions. Otherwise, if no error
was encountered, the next entry of the array is processed. After
the loop, each thread writes in another global array the partial
result of its execution, so all results are merged at the end into
one.

The fact that GCC supports HTM makes it easy to test and
use Intel’s TSX primitives to mark the beginning, abortion or
completion of a hardware memory transaction 1.

V. RESULTS AND ANALYSIS

This section measures two aspects regarding our prototype:
1) the total performance overhead.
2) the success rate (the number of successful runs despite

soft errors).
For that, an instance (a large sum of integers) of our

prototype was created where the total result being calculated
is known beforehand; in our scheme simply calling a new
calculus function is enough to obtain different values: simple
mathematical operations like sums, multiplications, factorials
are ideal for such tests. Knowing the correct result beforehand
lets us detect if the execution was able to reach the expected
result, or if an artificially soft error was injected and not
corrected. On average 4 soft errors per run are introduced.

A normal execution, without soft error detection and cor-
rection, of the calculation is performed before running the

1GCC supports all transactional memory primitives of RTM: GCC-x86-
transactional-memory-intrinsics

https://gcc.gnu.org/onlinedocs/gcc/x86-transactional-memory-intrinsics.html
https://gcc.gnu.org/onlinedocs/gcc/x86-transactional-memory-intrinsics.html


LEVERAGING MODERN MULTI-CORE PROCESSORS FEATURES TO EFFICIENTLY DEAL WITH SILENT ERRORS, AUGUST 2017 4

prototype. In both of them, it is measured the elapsed time
and the number of times it computed the correct value; that
gives us the ability to compare and evaluate our two main
aspects: how much performance overhead was introduced and
how much was the success rate improved.

In a machine with a Intel Core i7 6600U processor and
16GB of RAM, the process is repeated using 1,2 and 4 threads
500 times each. The average of all configurations is shown in
the next figures.

Fig. 1. Relative execution time of the normal executions vs our prototype.

Fig. 2. Success Rate of the normal executions vs our prototype

Figure 1 shows that the executions in average of our
prototype introduce a mean overhead of 80.65%; which is very
likely to increase as the prototype is completed, since right
now is not a generic technique for soft error management. In
Figure 2 is clear that the success rate of our prototype does
not get to 100%. This happens because, as stated before there
are multiple reasons why a transaction may abort. Further,
an iteration is retried 5 times before running it again without
transactions (hence if an error happens here it is not detected).
In general, these are preliminary results which tells us we are
down a right path but should and will be further detailed using
more complex benchmarks such as PARSEC 2.0 [13].

VI. CONCLUSIONS AND FUTURE WORK

Even though Hardware Transactional Memory was origi-
nally an alternative for traditional synchronization in concur-
rent shared memory applications, it exposes a very efficient
way to rollback a core’s cache which can be exploited as a
recovery mechanism, especially when dealing with soft errors.
The prototype built begins to supports this idea through the
preliminary results.

In terms of future work, the average amount of soft errors
injected per run may not be the most representative of real
life scenarios. Although it provides a good idea of how the
detection and correction phases behave, a more elaborate and
complete way of soft error injection is necessary. FlipIt in
[14] is an LLVM-based fault injection tool that can be used.
It provides the ability to insert bit flips into instructions with
a user defined distribution.

MPX can help detect soft errors that would otherwise
be harder to discover using replication, such as those that
happen in data pointers. The use of Hyper-Threading might
be exploited in the error detection phase, performing the
replication of the calculus. Thus, the combination of these
two features would allow us to detect different kinds of errors
and improve the performance of our technique, respectively.

REFERENCES

[1] D. Kuvaiskii, R. Faqeh, P. Bhatotia, P. Felber, and C. Fetzer, “Haft:
Hardware-assisted fault tolerance,” in Proceedings of the Eleventh Eu-
ropean Conference on Computer Systems. ACM, 2016, p. 25.

[2] V. Sridharan, N. DeBardeleben, S. Blanchard, K. B. Ferreira, J. Stearley,
J. Shalf, and S. Gurumurthi, “Memory errors in modern systems: The
good, the bad, and the ugly,” in ACM SIGPLAN Notices, vol. 50, no. 4.
ACM, 2015, pp. 297–310.

[3] G. A. Reis, J. Chang, N. Vachharajani, R. Rangan, and D. I. August,
“Swift: Software implemented fault tolerance,” in Proceedings of the
international symposium on Code generation and optimization. IEEE
Computer Society, 2005, pp. 243–254.

[4] Q. Liu, C. Jung, D. Lee, and D. Tiwari, “Clover: Compiler directed
lightweight soft error resilience,” in ACM Sigplan Notices, vol. 50, no. 5.
ACM, 2015, p. 2.

[5] M. Herlihy and J. E. B. Moss, Transactional memory: Architectural
support for lock-free data structures. ACM, 1993, vol. 21, no. 2.

[6] P. Hammarlund, A. J. Martinez, A. A. Bajwa, D. L. Hill, E. Hallnor,
H. Jiang, M. Dixon, M. Derr, M. Hunsaker, R. Kumar et al., “Haswell:
The fourth-generation intel core processor,” IEEE Micro, vol. 34, no. 2,
pp. 6–20, 2014.

[7] J. Reinders. Coarse-grained locks and transac-
tional synchronization explained. [Online]. Avail-
able: https://software.intel.com/en-us/blogs/2012/02/07/
coarse-grained-locks-and-transactional-synchronization-explained

[8] R. M. Yoo, C. J. Hughes, K. Lai, and R. Rajwar, “Performance
evaluation of intel R© transactional synchronization extensions for high-
performance computing,” in High Performance Computing, Networking,
Storage and Analysis (SC), 2013 International Conference for. IEEE,
2013, pp. 1–11.

[9] D. Marr, F. Binns, D. Hill, G. Hinton, D. Koufaty et al., “Hyper-
threading technology architecture and microarchitecture,” Intel Technol-
ogy Journal, vol. 6, no. 1, pp. 4–15, 2002.

[10] O. Oleksenko, D. Kuvaiskii, P. Bhatotia, C. Fetzer, and P. Felber,
“Efficient fault tolerance using intel mpx and tsx,” in Fast Abstract in
the 46th Annual IEEE/IFIP International Conference on Dependable
Systems and Networks, 2016.

[11] R. (Intel). Introduction to intel memory protection exten-
sions. [Online]. Available: https://software.intel.com/en-us/articles/
introduction-to-intel-memory-protection-extensions

[12] F. Haas, S. Weis, T. Ungerer, G. Pokam, and Y. Wu, “Poster: Fault-
tolerant execution on cots multi-core processors with hardware trans-
actional memory support,” in Parallel Architecture and Compilation
Techniques (PACT), 2016 International Conference on. IEEE, 2016,
pp. 421–422.

[13] C. Bienia and K. Li, “Parsec 2.0: A new benchmark suite for chip-
multiprocessors,” in Proceedings of the 5th Annual Workshop on Mod-
eling, Benchmarking and Simulation, vol. 2011, 2009.

[14] J. Calhoun, L. Olson, and M. Snir, “Flipit: An llvm based fault injector
for hpc,” in European Conference on Parallel Processing. Springer,
2014, pp. 547–558.

https://software.intel.com/en-us/blogs/2012/02/07/coarse-grained-locks-and-transactional-synchronization-explained
https://software.intel.com/en-us/blogs/2012/02/07/coarse-grained-locks-and-transactional-synchronization-explained
https://software.intel.com/en-us/articles/introduction-to-intel-memory-protection-extensions
https://software.intel.com/en-us/articles/introduction-to-intel-memory-protection-extensions

	Introduction
	Concepts
	Hardware Transactional Memory
	Hyper-Threading
	Memory Protection Extensions (MPX)

	Previous work and Background
	Methodology
	Results and analysis
	Conclusions and Future Work
	References

